本文整理汇总了Python中matplotlib.pylab.axis方法的典型用法代码示例。如果您正苦于以下问题:Python pylab.axis方法的具体用法?Python pylab.axis怎么用?Python pylab.axis使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pylab
的用法示例。
在下文中一共展示了pylab.axis方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: modbc
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axis [as 别名]
def modbc(self):
self.resorx = 0.0
self.resory = 0.0
for i in range(2, self.ni):
xp = self.x(i, nj - 1)
yp = self.y(i, nj - 1)
xb = self.x(i, nj)
yb = self.y(i, nj)
ifail = 0
call e02bcf(nicap7, xkn, cn, xb, 1, sn, ifail)
interpolate.CubicSpline(x, y, axis=0, bc_type='not-a-knot', extrapolate=None)
dydxb = min(sn(2), 1.d10)
dydxb = max(sn(2), 1.d-10)
if(sn(2).lt.0.0) dydxb = max(sn(2), -1.d10)
if(sn(2).lt.0.0) dydxb = min(sn(2), -1.d-10)
x(i, nj) = (yb-yp-xb*dydxb-xp/dydxb)/(-dydxb-1.0/dydxb)
ifail = 0.0
call e02bcf(nicap7, xkn, cn, x(i, nj), 1, sn, ifail)
y(i, nj) = sn(1)
resxb = abs(xb-x(i, nj))/xl
resorx = resorx+resxb
resyb = abs(yb-y(i, nj))/yl
resory = resory+resyb
示例2: _show_video
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axis [as 别名]
def _show_video(video, fps=10):
# Import matplotlib/pylab only if needed
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pylab as pl
pl.style.use('ggplot')
pl.axis('off')
if fps < 0:
fps = 25
video /= 255. # Pylab works in [0, 1] range
img = None
pause_length = 1. / fps
try:
for f in range(video.shape[0]):
im = video[f, :, :, :]
if img is None:
img = pl.imshow(im)
else:
img.set_data(im)
pl.pause(pause_length)
pl.draw()
except:
pass
示例3: get
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axis [as 别名]
def get(self,t1,t2):
t,v = self.stream.get_tsvs(t1-2.0*self.dt,t2+2.0*self.dt)
try:
return interp1d(t,
v.reshape(len(t),-1),
axis=0,
fill_value='extrapolate',
bounds_error = False
)(self.ts(t1,t2)).reshape(
[len(self.ts(t1,t2))]+list(v.shape[1:]))
except ValueError:
# old versions of scipy don't know extrapolate
# it also doesn't behave as numpy interpolate (extending the first and last values) as only one value is accepted
# this should not be a problem if we 2*dt before and after the time slice
return interp1d(t,
v.reshape(len(t),-1),
axis=0,
fill_value=np.mean(v),
bounds_error = False
)(self.ts(t1,t2)).reshape(
[len(self.ts(t1,t2))]+list(v.shape[1:]))
示例4: _repr_html_
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axis [as 别名]
def _repr_html_(self):
from . import variable_describe
def _plot(fn):
from PIL import Image
try:
import matplotlib.pylab as plt
t = np.array(Image.open(fn))
plt.figure()
plt.imshow(self._crop(t))
plt.axis('off')
return "<img src='data:image/png;base64," + variable_describe._plot_to_string() + "'>"
except:
return "<br/>Failed to open."
s = "<b>ImageSequence</b> size="+str(self.size)
s += ", offset = "+str(self.offset)
s += ", repeat = "+str(self.repeat)
s += ", is_color = "+str(self.is_color)
s += ", [frame "+str(self.i)+"/"+str(len(self))+"]"
s += "<div style='background:#ff;padding:10px'><b>Input Images:</b>"
for t in np.unique(self.file_list)[:10]:
s += "<div style='background:#fff; margin:10px;padding:10px; border-left: 4px solid #eee;'>"+str(t)+": "+_plot(t)+"</div>"
s += "</div>"
return s
示例5: get_one_frame
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axis [as 别名]
def get_one_frame(self):
file_list = list(np.repeat(self.file_list,self.repeat))
if file_list[self.i] in self.cache.keys():
frame = self.cache[file_list[self.i]]
else:
from PIL import Image
frame = np.array(Image.open(file_list[self.i]))
if not self.is_color and len(frame.shape) > 2:
frame = frame.mean(2)
if self.is_color:
if len(frame.shape) == 2:
print('2 to 3d')
frame = frame[:,:,None]
if frame.shape[2] < 3:
frame = np.repeat(frame[:,:,None],3,axis=2)
if frame.shape[2] > 3:
frame = frame[:,:,:3]
self.cache[file_list[self.i]] = frame
cropped_frame = self._crop(frame)
self.last_image = cropped_frame
self.i += 1
return cropped_frame
示例6: format_array
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axis [as 别名]
def format_array(arr):
"""
Utility to format array for tiled plot
args: arr (numpy array)
shape : (n_samples, n_channels, img_dim1, img_dim2)
"""
n_channels = arr.shape[1]
len_arr = arr.shape[0]
assert (n_channels == 1 or n_channels == 3), "n_channels should be 1 (Greyscale) or 3 (Color)"
if n_channels == 1:
arr = np.repeat(arr, 3, axis=1)
shape1, shape2 = arr.shape[-2:]
arr = np.transpose(arr, [1, 0, 2, 3])
arr = arr.reshape([3, len_arr, shape1 * shape2]).astype(np.float64)
arr = tuple([arr[i] for i in xrange(3)] + [None])
return arr, shape1, shape2
示例7: format_plot
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axis [as 别名]
def format_plot(X, epoch=None, title=None, figsize=(15, 10)):
plt.figure(figsize=figsize)
if X.shape[-1] == 1:
plt.imshow(X[:, :, 0], cmap="gray")
else:
plt.imshow(X)
plt.axis("off")
plt.gca().xaxis.set_major_locator(mp.ticker.NullLocator())
plt.gca().yaxis.set_major_locator(mp.ticker.NullLocator())
if epoch is not None and title is None:
save_path = os.path.join(FLAGS.fig_dir, "current_batch_%s.png" % epoch)
elif epoch is not None and title is not None:
save_path = os.path.join(FLAGS.fig_dir, "%s_%s.png" % (title, epoch))
elif title is not None:
save_path = os.path.join(FLAGS.fig_dir, "%s.png" % title)
plt.savefig(save_path, bbox_inches='tight', pad_inches=0)
plt.clf()
plt.close()
示例8: tsne_plot
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axis [as 别名]
def tsne_plot(xs, xt, xs_label, xt_label, subset=True, title=None, pname=None):
num_test=1000
import matplotlib.cm as cm
if subset:
combined_imgs = np.vstack([xs[0:num_test, :], xt[0:num_test, :]])
combined_labels = np.vstack([xs_label[0:num_test, :],xt_label[0:num_test, :]])
combined_labels = combined_labels.astype('int')
combined_domain = np.vstack([np.zeros((num_test,1)),np.ones((num_test,1))])
from sklearn.manifold import TSNE
tsne = TSNE(perplexity=30, n_components=2, init='pca', n_iter=3000)
source_only_tsne = tsne.fit_transform(combined_imgs)
plt.figure(figsize=(15,15))
plt.scatter(source_only_tsne[:num_test,0], source_only_tsne[:num_test,1], c=combined_labels[:num_test].argmax(1),
s=50, alpha=0.5,marker='o', cmap=cm.jet, label='source')
plt.scatter(source_only_tsne[num_test:,0], source_only_tsne[num_test:,1], c=combined_labels[num_test:].argmax(1),
s=50, alpha=0.5,marker='+',cmap=cm.jet,label='target')
plt.axis('off')
plt.legend(loc='best')
plt.title(title)
if filesave:
plt.savefig(os.path.join(pname,title+'.png'),bbox_inches='tight', pad_inches = 0,
format='png')
else:
plt.savefig(title+'.png')
plt.close()
#%% source model
示例9: imshow_
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axis [as 别名]
def imshow_(x, **kwargs):
if x.ndim == 2:
plt.imshow(x, interpolation="nearest", **kwargs)
elif x.ndim == 1:
plt.imshow(x[:, None].T, interpolation="nearest", **kwargs)
plt.yticks([])
plt.axis("tight")
# ------------- Data -------------
示例10: plot1D_mat
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axis [as 别名]
def plot1D_mat(a, b, M, title=''):
""" Plot matrix M with the source and target 1D distribution
Creates a subplot with the source distribution a on the left and
target distribution b on the tot. The matrix M is shown in between.
Parameters
----------
a : ndarray, shape (na,)
Source distribution
b : ndarray, shape (nb,)
Target distribution
M : ndarray, shape (na, nb)
Matrix to plot
"""
na, nb = M.shape
gs = gridspec.GridSpec(3, 3)
xa = np.arange(na)
xb = np.arange(nb)
ax1 = pl.subplot(gs[0, 1:])
pl.plot(xb, b, 'r', label='Target distribution')
pl.yticks(())
pl.title(title)
ax2 = pl.subplot(gs[1:, 0])
pl.plot(a, xa, 'b', label='Source distribution')
pl.gca().invert_xaxis()
pl.gca().invert_yaxis()
pl.xticks(())
pl.subplot(gs[1:, 1:], sharex=ax1, sharey=ax2)
pl.imshow(M, interpolation='nearest')
pl.axis('off')
pl.xlim((0, nb))
pl.tight_layout()
pl.subplots_adjust(wspace=0., hspace=0.2)
示例11: _gradient_windowed
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axis [as 别名]
def _gradient_windowed(X, points_window, axis):
'''
Calculate the gradient using an arbitrary window. The larger window make
this procedure less noisy that the numpy native gradient.
'''
w_s = 2*points_window
#I use slices to deal with arbritary dimenssions
#https://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
n_axis_ini = max(0, axis)
n_axis_fin = max(0, X.ndim-axis-1)
right_slice = [slice(None, None, None)]*n_axis_ini + [slice(None, -w_s, None)]
right_slice = tuple(right_slice)
left_slice = [slice(None, None, None)]*n_axis_ini + [slice(w_s, None, None)]
left_slice = tuple(left_slice)
right_pad = [(0,0)]*n_axis_ini + [(w_s, 0)] + [(0,0)]*n_axis_fin
left_pad = [(0,0)]*n_axis_ini + [(0, w_s)] + [(0,0)]*n_axis_fin
right_side = np.pad(X[right_slice], right_pad, 'edge')
left_side = np.pad(X[left_slice], left_pad, 'edge')
ramp = np.full(X.shape[axis]-2*w_s, w_s*2)
ramp = np.pad(ramp, pad_width = (w_s, w_s), mode='linear_ramp', end_values = w_s)
#ramp = np.pad(ramp, pad_width = (w_s, w_s), mode='constant', constant_values = np.nan)
ramp_slice = [None]*n_axis_ini + [slice(None, None, None)] + [None]*n_axis_fin
ramp_slice = tuple(ramp_slice)
grad = (left_side - right_side) / ramp[ramp_slice] #divide it by the time window
return grad
示例12: _h_smooth_cnt
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axis [as 别名]
def _h_smooth_cnt(food_cnt, resampling_N = 1000, smooth_window=None, _is_debug=False):
if smooth_window is None:
smooth_window = resampling_N//20
if not _is_valid_cnt(food_cnt):
#invalid contour arrays
return food_cnt
smooth_window = smooth_window if smooth_window%2 == 1 else smooth_window+1
# calculate the cumulative length for each segment in the curve
dx = np.diff(food_cnt[:, 0])
dy = np.diff(food_cnt[:, 1])
dr = np.sqrt(dx * dx + dy * dy)
lengths = np.cumsum(dr)
lengths = np.hstack((0, lengths)) # add the first point
tot_length = lengths[-1]
fx = interp1d(lengths, food_cnt[:, 0])
fy = interp1d(lengths, food_cnt[:, 1])
subLengths = np.linspace(0 + np.finfo(float).eps, tot_length, resampling_N)
rx = fx(subLengths)
ry = fy(subLengths)
pol_degree = 3
rx = savgol_filter(rx, smooth_window, pol_degree, mode='wrap')
ry = savgol_filter(ry, smooth_window, pol_degree, mode='wrap')
food_cnt_s = np.stack((rx, ry), axis=1)
if _is_debug:
import matplotlib.pylab as plt
plt.figure()
plt.plot(food_cnt[:, 0], food_cnt[:, 1], '.-')
plt.plot(food_cnt_s[:, 0], food_cnt_s[:, 1], '.-')
plt.axis('equal')
plt.title('smoothed contour')
return food_cnt_s
#%%
示例13: _h_get_unit_vec
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axis [as 别名]
def _h_get_unit_vec(x):
return x/np.linalg.norm(x, axis=1)[:, np.newaxis]
#%%
示例14: put
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axis [as 别名]
def put(self,s):
if self.sequence.shape[1:] == s.shape[1:]:
if len(self.sequence) + len(s) > self.max_frames:
self.sequence = np.concatenate([self.sequence,s],axis=0)[-self.max_frames:]
else:
self.sequence = np.concatenate([self.sequence,s],axis=0)
else:
if len(s) > self.max_frames:
self.sequence = s[-self.max_frames:]
else:
self.sequence = s
示例15: update_image
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axis [as 别名]
def update_image(self):
from PIL import Image, ImageTk
if self.decay_activity is not None:
try:
da = self.decay_activity
da = da + np.min(da)
im = da/max(np.max(da),1.0)
im = im.clip(0.0,1.0)
if im.shape[0] < 50:
im = np.repeat(im,10,axis=0)
im = np.repeat(im,10,axis=1)
elif im.shape[0] < 100:
im = np.repeat(im,5,axis=0)
im = np.repeat(im,5,axis=1)
elif im.shape[0] < 300:
im = np.repeat(im,2,axis=0)
im = np.repeat(im,2,axis=1)
if self.cmap is not None:
self.image = Image.fromarray(self.cmap(im, bytes=True))
else:
self.image = Image.fromarray(256.0*im).convert('RGB')#Image.open(image_buffer)#cStringIO.StringIO(self.last_buffer))
#self.image.resize((500,500), Image.ANTIALIAS)
#self.image.load()
self.image1 = ImageTk.PhotoImage(self.image)
self.panel1.configure(image=self.image1)
self.root.title(str(len(self.last_buffer))+' Images buffered')
self.display = self.image1
except Exception as e:
#print(e)
raise
#pass
self.root.after(int(50), self.update_image)