本文整理汇总了Python中matplotlib.pylab.axes方法的典型用法代码示例。如果您正苦于以下问题:Python pylab.axes方法的具体用法?Python pylab.axes怎么用?Python pylab.axes使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.pylab
的用法示例。
在下文中一共展示了pylab.axes方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_confusion_matrix
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axes [as 别名]
def plot_confusion_matrix(cm, genre_list, name, title):
pylab.clf()
pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0)
ax = pylab.axes()
ax.set_xticks(range(len(genre_list)))
ax.set_xticklabels(genre_list)
ax.xaxis.set_ticks_position("bottom")
ax.set_yticks(range(len(genre_list)))
ax.set_yticklabels(genre_list)
pylab.title(title)
pylab.colorbar()
pylab.grid(False)
pylab.show()
pylab.xlabel('Predicted class')
pylab.ylabel('True class')
pylab.grid(False)
pylab.savefig(
os.path.join(CHART_DIR, "confusion_matrix_%s.png" % name), bbox_inches="tight")
开发者ID:PacktPublishing,项目名称:Building-Machine-Learning-Systems-With-Python-Second-Edition,代码行数:20,代码来源:utils.py
示例2: __init__
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axes [as 别名]
def __init__(self, rect, wtype, *args, **kwargs):
"""
Creates a matplotlib.widgets widget
:param rect: The rectangle of the position [left, bottom, width, height] in relative figure coordinates
:param wtype: A type from matplotlib.widgets, eg. Button, Slider, TextBox, RadioButtons
:param args: Positional arguments passed to the widget
:param kwargs: Keyword arguments passed to the widget and events used for the widget
eg. if wtype is Slider, on_changed=f can be used as keyword argument
"""
self.ax = plt.axes(rect)
events = {}
for k in list(kwargs.keys()):
if k.startswith('on_'):
events[k] = kwargs.pop(k)
self.object = wtype(self.ax, *args, **kwargs)
for k in events:
if hasattr(self.object, k):
getattr(self.object, k)(events[k])
示例3: save_images
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axes [as 别名]
def save_images(self, X, imgfile, density=False):
ax = plt.axes()
x = X[:, 0]
y = X[:, 1]
if density:
xy = np.vstack([x,y])
z = scipy.stats.gaussian_kde(xy)(xy)
ax.scatter(x, y, c=z, marker='o', edgecolor='')
else:
ax.scatter(x, y, marker='o', c=range(x.shape[0]),
cmap=plt.cm.coolwarm)
if self.collection is not None:
self.collection.set_transform(ax.transData)
ax.add_collection(self.collection)
ax.text(x[0], y[0], str('start'), transform=ax.transAxes)
ax.axis([-0.2, 1.2, -0.2, 1.2])
fig = plt.gcf()
plt.savefig(imgfile)
plt.close()
示例4: image2
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axes [as 别名]
def image2(vals, vmin=None, vmax=None, outFile=None,
imageWidth=None, imageHeight=None, upOrDown='upper',
cmap=M.cm.jet, makeFigure=False, **options
):
M.clf()
M.axes([0, 0, 1, 1])
if vmin == 'auto': vmin = None
if vmax == 'auto': vmax = None
if imageWidth is not None: makeFigure = True
if cmap is None or cmap == '': cmap = M.cm.jet
if isinstance(cmap, types.StringType) and cmap != '':
try:
cmap = eval('M.cm.' + cmap)
except:
cmap = M.cm.jet
if makeFigure:
dpi = float(options['dpi'])
width = float(imageWidth) / dpi
height = float(imageHeight) / dpi
f = M.figure(figsize=(width,height)).add_axes([0.1,0.1,0.8,0.8], frameon=True)
if vmin is not None or vmax is not None:
if vmin is None:
vmin = min(min(vals))
else:
vmin = float(vmin)
if vmax is None:
vmax = max(max(vals))
else:
vmax = float(vmax)
vrange = vmax - vmin
levels = N.arange(vmin, vmax, vrange/30.)
else:
levels = 30
M.contourf(vals, levels, cmap=cmap, origin=upOrDown)
evalKeywordCmds(options)
if outFile: M.savefig(outFile, **validCmdOptions(options, 'savefig'))
示例5: plotBarsFromHModel
# 需要导入模块: from matplotlib import pylab [as 别名]
# 或者: from matplotlib.pylab import axes [as 别名]
def plotBarsFromHModel(hmodel, Data=None, doShowNow=True, figH=None,
compsToHighlight=None, sortBySize=False,
width=12, height=3, Ktop=None):
if Data is None:
width = width/2
if figH is None:
figH = pylab.figure(figsize=(width,height))
else:
pylab.axes(figH)
K = hmodel.allocModel.K
VocabSize = hmodel.obsModel.comp[0].lamvec.size
learned_tw = np.zeros( (K, VocabSize) )
for k in xrange(K):
lamvec = hmodel.obsModel.comp[k].lamvec
learned_tw[k,:] = lamvec / lamvec.sum()
if sortBySize:
sortIDs = np.argsort(hmodel.allocModel.Ebeta[:-1])[::-1]
sortIDs = sortIDs[:Ktop]
learned_tw = learned_tw[sortIDs]
if Data is not None and hasattr(Data, "true_tw"):
# Plot the true parameters and learned parameters
pylab.subplot(121)
pylab.imshow(Data.true_tw, **imshowArgs)
pylab.colorbar()
pylab.title('True Topic x Word')
pylab.subplot(122)
pylab.imshow(learned_tw, **imshowArgs)
pylab.title('Learned Topic x Word')
else:
# Plot just the learned parameters
aspectR = learned_tw.shape[1]/learned_tw.shape[0]
while imshowArgs['vmax'] > 2 * np.percentile(learned_tw, 97):
imshowArgs['vmax'] /= 5
pylab.imshow(learned_tw, aspect=aspectR, **imshowArgs)
if compsToHighlight is not None:
ks = np.asarray(compsToHighlight)
if ks.ndim == 0:
ks = np.asarray([ks])
pylab.yticks( ks, ['**** %d' % (k) for k in ks])
if doShowNow and figH is None:
pylab.show()