本文整理汇总了Python中matplotlib.patheffects.Stroke方法的典型用法代码示例。如果您正苦于以下问题:Python patheffects.Stroke方法的具体用法?Python patheffects.Stroke怎么用?Python patheffects.Stroke使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.patheffects
的用法示例。
在下文中一共展示了patheffects.Stroke方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_patheffect1
# 需要导入模块: from matplotlib import patheffects [as 别名]
# 或者: from matplotlib.patheffects import Stroke [as 别名]
def test_patheffect1():
ax1 = plt.subplot(111)
ax1.imshow([[1, 2], [2, 3]])
txt = ax1.annotate("test", (1., 1.), (0., 0),
arrowprops=dict(arrowstyle="->",
connectionstyle="angle3", lw=2),
size=20, ha="center",
path_effects=[path_effects.withStroke(linewidth=3,
foreground="w")])
txt.arrow_patch.set_path_effects([path_effects.Stroke(linewidth=5,
foreground="w"),
path_effects.Normal()])
ax1.grid(True, linestyle="-")
pe = [path_effects.withStroke(linewidth=3, foreground="w")]
for l in ax1.get_xgridlines() + ax1.get_ygridlines():
l.set_path_effects(pe)
示例2: test_patheffect3
# 需要导入模块: from matplotlib import patheffects [as 别名]
# 或者: from matplotlib.patheffects import Stroke [as 别名]
def test_patheffect3():
p1, = plt.plot([1, 3, 5, 4, 3], 'o-b', lw=4)
p1.set_path_effects([path_effects.SimpleLineShadow(),
path_effects.Normal()])
plt.title(r'testing$^{123}$',
path_effects=[path_effects.withStroke(linewidth=1, foreground="r")])
leg = plt.legend([p1], [r'Line 1$^2$'], fancybox=True, loc=2)
leg.legendPatch.set_path_effects([path_effects.withSimplePatchShadow()])
text = plt.text(2, 3, 'Drop test', color='white',
bbox={'boxstyle': 'circle,pad=0.1', 'color': 'red'})
pe = [path_effects.Stroke(linewidth=3.75, foreground='k'),
path_effects.withSimplePatchShadow((6, -3), shadow_rgbFace='blue')]
text.set_path_effects(pe)
text.get_bbox_patch().set_path_effects(pe)
pe = [path_effects.PathPatchEffect(offset=(4, -4), hatch='xxxx',
facecolor='gray'),
path_effects.PathPatchEffect(edgecolor='white', facecolor='black',
lw=1.1)]
t = plt.gcf().text(0.02, 0.1, 'Hatch shadow', fontsize=75, weight=1000,
va='center')
t.set_path_effects(pe)
示例3: test_collection
# 需要导入模块: from matplotlib import patheffects [as 别名]
# 或者: from matplotlib.patheffects import Stroke [as 别名]
def test_collection():
x, y = np.meshgrid(np.linspace(0, 10, 150), np.linspace(-5, 5, 100))
data = np.sin(x) + np.cos(y)
cs = plt.contour(data)
pe = [path_effects.PathPatchEffect(edgecolor='black', facecolor='none',
linewidth=12),
path_effects.Stroke(linewidth=5)]
for collection in cs.collections:
collection.set_path_effects(pe)
for text in plt.clabel(cs, colors='white'):
text.set_path_effects([path_effects.withStroke(foreground='k',
linewidth=3)])
text.set_bbox({'boxstyle': 'sawtooth', 'facecolor': 'none',
'edgecolor': 'blue'})
示例4: test_patheffect3
# 需要导入模块: from matplotlib import patheffects [as 别名]
# 或者: from matplotlib.patheffects import Stroke [as 别名]
def test_patheffect3():
p1, = plt.plot([1, 3, 5, 4, 3], 'o-b', lw=4)
p1.set_path_effects([path_effects.SimpleLineShadow(),
path_effects.Normal()])
plt.title(r'testing$^{123}$',
path_effects=[path_effects.withStroke(linewidth=1, foreground="r")])
leg = plt.legend([p1], [r'Line 1$^2$'], fancybox=True, loc='upper left')
leg.legendPatch.set_path_effects([path_effects.withSimplePatchShadow()])
text = plt.text(2, 3, 'Drop test', color='white',
bbox={'boxstyle': 'circle,pad=0.1', 'color': 'red'})
pe = [path_effects.Stroke(linewidth=3.75, foreground='k'),
path_effects.withSimplePatchShadow((6, -3), shadow_rgbFace='blue')]
text.set_path_effects(pe)
text.get_bbox_patch().set_path_effects(pe)
pe = [path_effects.PathPatchEffect(offset=(4, -4), hatch='xxxx',
facecolor='gray'),
path_effects.PathPatchEffect(edgecolor='white', facecolor='black',
lw=1.1)]
t = plt.gcf().text(0.02, 0.1, 'Hatch shadow', fontsize=75, weight=1000,
va='center')
t.set_path_effects(pe)
示例5: test_patheffects_stroked_text
# 需要导入模块: from matplotlib import patheffects [as 别名]
# 或者: from matplotlib.patheffects import Stroke [as 别名]
def test_patheffects_stroked_text():
text_chunks = [
'A B C D E F G H I J K L',
'M N O P Q R S T U V W',
'X Y Z a b c d e f g h i j',
'k l m n o p q r s t u v',
'w x y z 0123456789',
r"!@#$%^&*()-=_+[]\;'",
',./{}|:"<>?'
]
font_size = 50
ax = plt.axes([0, 0, 1, 1])
for i, chunk in enumerate(text_chunks):
text = ax.text(x=0.01, y=(0.9 - i * 0.13), s=chunk,
fontdict={'ha': 'left', 'va': 'center',
'size': font_size, 'color': 'white'})
text.set_path_effects([path_effects.Stroke(linewidth=font_size / 10,
foreground='black'),
path_effects.Normal()])
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.axis('off')
示例6: drawRequestOnTimeline
# 需要导入模块: from matplotlib import patheffects [as 别名]
# 或者: from matplotlib.patheffects import Stroke [as 别名]
def drawRequestOnTimeline(ticks,messagesbyTime,i=0):
fig, ax = plt.subplots(figsize=(8.0,4.0))
ax.plot(ticks, messagesbyTime, '-',color='#756bb1',alpha=1.,linewidth=2)
z = np.polyfit(ticks, messagesbyTime, 10)
p = np.poly1d(z)
ax1 = ax.plot(ticks,p(ticks),":",color='#c1bcdc',linewidth=6,label="Total num. of requests",path_effects=[pe.Stroke(linewidth=8, foreground='purple'), pe.Normal()])
ax.set_xlabel("Simulation number: %i"%i, fontsize=12)
ax.set_ylabel("QoS satisfaction \n (num. of requests)", fontsize=12)
ax.tick_params(labelsize=10)
#ax.set_xlim(-20,2020)
#ax.set_ylim(0,120)
#plt.legend([ax1,ax2,ax3],['Total num. of requests','Partition','ILP'],loc="upper right",fontsize=18)
plt.legend(loc="lower left",fontsize=12)
plt.tight_layout()
#plt.savefig('TimeSerie_Requests-%i.pdf'%i, format='pdf', dpi=600)
示例7: plot_result
# 需要导入模块: from matplotlib import patheffects [as 别名]
# 或者: from matplotlib.patheffects import Stroke [as 别名]
def plot_result(embeds, labels, output_path):
# vis, plot code from https://github.com/pangyupo/mxnet_center_loss
num = len(labels)
names = dict()
for i in range(10):
names[i] = str(i)
palette = np.array(sns.color_palette("hls", 10))
f = plt.figure(figsize=(8, 8))
ax = plt.subplot(aspect='equal')
sc = ax.scatter(embeds[:, 0], embeds[:, 1], lw=0, s=40,
c=palette[labels.astype(np.int)])
ax.axis('off')
ax.axis('tight')
# We add the labels for each digit.
txts = []
for i in range(10):
# Position of each label.
xtext, ytext = np.median(embeds[labels == i, :], axis=0)
txt = ax.text(xtext, ytext, names[i])
txt.set_path_effects([
PathEffects.Stroke(linewidth=5, foreground="w"),
PathEffects.Normal()])
txts.append(txt)
plt.savefig(output_path)
示例8: draw_outline
# 需要导入模块: from matplotlib import patheffects [as 别名]
# 或者: from matplotlib.patheffects import Stroke [as 别名]
def draw_outline(o, lw):
o.set_path_effects([patheffects.Stroke(
linewidth=lw, foreground='black'), patheffects.Normal()])
示例9: add_credit
# 需要导入模块: from matplotlib import patheffects [as 别名]
# 或者: from matplotlib.patheffects import Stroke [as 别名]
def add_credit(self,text):
if self.use_credit:
a = self.ax.text(0.99,0.01,text,fontsize=10,color='k',alpha=0.7,fontweight='bold',
transform=self.ax.transAxes,ha='right',va='bottom',zorder=10)
a.set_path_effects([path_effects.Stroke(linewidth=5, foreground='white'),
path_effects.Normal()])
示例10: CameraImageSummary
# 需要导入模块: from matplotlib import patheffects [as 别名]
# 或者: from matplotlib.patheffects import Stroke [as 别名]
def CameraImageSummary(frontal_images, run_segment_strings, figsize=(6, 4)):
"""Write frontal_images as tf.Summaries.
Args:
frontal_images: Float tensor of frontal camera images: Shape: [batch,
height, width, depth]. Expected aspect ratio of 3:2 for visualization.
run_segment_strings: Tensor of strings: Shape: [batch, 1]. The associated
RunSegment proto for the batch.
figsize: Tuple indicating size of camera image. Default is (6, 4)
indicating a 3:2 aspect ratio for visualization.
"""
# Parse the run segment strings to extract the run segment info.
run_segment_ids = ExtractRunIds(run_segment_strings)
def DrawCameraImage(fig, axes, frontal_image, run_segment_id):
"""Draw camera image for image summary."""
plot.AddImage(
fig=fig,
axes=axes,
data=frontal_image / 256.,
show_colorbar=False,
suppress_xticks=True,
suppress_yticks=True)
txt = axes.text(
x=0.5,
y=0.01,
s=run_segment_id,
color='blue',
fontsize=14,
transform=axes.transAxes,
horizontalalignment='center')
txt.set_path_effects([
path_effects.Stroke(linewidth=3, foreground='lightblue'),
path_effects.Normal()
])
with plot.MatplotlibFigureSummary(
'examples', figsize=figsize, max_outputs=10) as fig:
# Plot raw frontal image samples for each example.
fig.AddSubplot([frontal_images, run_segment_ids], DrawCameraImage)
示例11: scatter
# 需要导入模块: from matplotlib import patheffects [as 别名]
# 或者: from matplotlib.patheffects import Stroke [as 别名]
def scatter(study_names, X, ax, title="population", norm=False):
n_studies = X.shape[0]
palette = np.array(sns.color_palette("hls", n_studies))
sc = ax.scatter(X[:,0], X[:,1], lw=0, s=60, c=palette[np.arange(n_studies)])
# add labels for each study
txts = []
X_range = X[:,0].max()-X[:,0].min()
Y_range = X[:,1].max()-X[:,1].min()
for i in range(n_studies):
# note that the below magic numbers are for aesthetics
# only and are simply based on (manual) fiddling!
jitter = np.array([-.05*X_range, .03*Y_range])
xtext, ytext = X[i, :] + jitter
txt = ax.text(xtext, ytext, study_names[i], fontsize=9)
txt.set_path_effects([PathEffects.Stroke(linewidth=5, foreground="w"), PathEffects.Normal()])
txts.append(txt)
ax.set_xlim(min(X[:,0])-.5*X_range, max(X[:,0])+.5*X_range)
ax.set_ylim(min(X[:,1])-.1*Y_range, max(X[:,1])+.1*Y_range)
ax.set_title(title)
ax.set_xticks([])
ax.set_yticks([])
ax.axis('off')
# also return palette for later use
return sc, convert_to_RGB(palette[np.arange(n_studies)])
示例12: test_patheffect1
# 需要导入模块: from matplotlib import patheffects [as 别名]
# 或者: from matplotlib.patheffects import Stroke [as 别名]
def test_patheffect1():
ax1 = plt.subplot(111)
ax1.imshow([[1, 2], [2, 3]])
txt = ax1.annotate("test", (1., 1.), (0., 0),
arrowprops=dict(arrowstyle="->",
connectionstyle="angle3", lw=2),
size=20, ha="center",
path_effects=[path_effects.withStroke(linewidth=3,
foreground="w")])
txt.arrow_patch.set_path_effects([path_effects.Stroke(linewidth=5,
foreground="w"),
path_effects.Normal()])
pe = [path_effects.withStroke(linewidth=3, foreground="w")]
ax1.grid(True, linestyle="-", path_effects=pe)
示例13: embedding2dplot
# 需要导入模块: from matplotlib import patheffects [as 别名]
# 或者: from matplotlib.patheffects import Stroke [as 别名]
def embedding2dplot(data, labels, show_median=True, show_legend=True):
'''2D embedding visualization.
Modified from:
https://beta.oreilly.com/learning/an-illustrated-introduction-to-the-t-sne-algorithm
'''
# We choose a color palette with seaborn.
max_label = labels.max()
palette = np.array(sns.color_palette("hls", max_label+1))
# We create a scatter plot.
fig = plt.figure(figsize=(8, 8))
ax = plt.subplot(aspect='equal')
sc = ax.scatter(data[:, 0], data[:, 1], lw=0, s=40,
c=palette[labels.astype(np.int)])
plt.xlim(-25, 25)
plt.ylim(-25, 25)
ax.axis('off')
ax.axis('tight')
# We add the labels for each cluster.
if show_median:
txts = []
for i in range(10):
# Position of each label.
xtext, ytext = np.median(data[labels == i, :], axis=0)
txt = ax.text(xtext, ytext, str(i), fontsize=24)
txt.set_path_effects([
PathEffects.Stroke(linewidth=5, foreground="w"),
PathEffects.Normal()])
txts.append(txt)
# Show labels as legend patches
if show_legend:
handles = _get_legend(palette, labels)
ax.legend(handles=handles)
return fig, ax, sc
示例14: apply_label
# 需要导入模块: from matplotlib import patheffects [as 别名]
# 或者: from matplotlib.patheffects import Stroke [as 别名]
def apply_label(x, color, label,
text_side='left',
lw=False,
x_align=0.0,
y_align=0.04,
contour_ratio=1.5,
text_color=False,
):
if text_color:
color=text_color
ax = plt.gca()
if not lw:
lw = mpl.rcParams['lines.linewidth']
if text_side == 'left':
text = ax.text(x_align, y_align, label,
fontweight="bold",
color=color,
horizontalalignment="left",
va="bottom",
# For diagnostic purposes, the rasterization workaround should be removed once we can identify why function execution in PythonTeX introduces enlarged bounding boxes.
#bbox=dict(facecolor='red', alpha=0.5),
transform=ax.transAxes,
)
if text_side == 'right':
text = ax.text(1.0-x_align, y_align, label,
fontweight="bold",
color=color,
horizontalalignment="right",
va="bottom",
# For diagnostic purposes, the rasterization workaround should be removed once we can identify why function execution in PythonTeX introduces enlarged bounding boxes.
#bbox=dict(facecolor='red', alpha=0.5),
rasterized=True,
transform=ax.transAxes,
)
text.set_path_effects([path_effects.Stroke(linewidth=lw*contour_ratio, foreground='w'),
path_effects.Normal()])
示例15: show_video_subtitle
# 需要导入模块: from matplotlib import patheffects [as 别名]
# 或者: from matplotlib.patheffects import Stroke [as 别名]
def show_video_subtitle(frames, subtitle):
fig, ax = plt.subplots()
fig.show()
text = plt.text(0.5, 0.1, "",
ha='center', va='center', transform=ax.transAxes,
fontdict={'fontsize': 15, 'color':'white', 'fontweight': 500})
text.set_path_effects([path_effects.Stroke(linewidth=3, foreground='black'),
path_effects.Normal()])
subs = subtitle.split()
inc = max(len(frames)/(len(subs)+1), 0.01)
i = 0
img = None
for frame in frames:
sub = " ".join(subs[:int(i/inc)])
text.set_text(sub)
if img is None:
img = plt.imshow(frame)
else:
img.set_data(frame)
fig.canvas.draw()
i += 1