本文整理汇总了Python中matplotlib.mlab.GaussianKDE方法的典型用法代码示例。如果您正苦于以下问题:Python mlab.GaussianKDE方法的具体用法?Python mlab.GaussianKDE怎么用?Python mlab.GaussianKDE使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.mlab
的用法示例。
在下文中一共展示了mlab.GaussianKDE方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_kde_bandwidth_method
# 需要导入模块: from matplotlib import mlab [as 别名]
# 或者: from matplotlib.mlab import GaussianKDE [as 别名]
def test_kde_bandwidth_method(self):
np.random.seed(8765678)
n_basesample = 50
xn = np.random.randn(n_basesample)
# Default
gkde = mlab.GaussianKDE(xn)
# Supply a callable
gkde2 = mlab.GaussianKDE(xn, 'scott')
# Supply a scalar
gkde3 = mlab.GaussianKDE(xn, bw_method=gkde.factor)
xs = np.linspace(-7, 7, 51)
kdepdf = gkde.evaluate(xs)
kdepdf2 = gkde2.evaluate(xs)
assert_almost_equal(kdepdf.all(), kdepdf2.all())
kdepdf3 = gkde3.evaluate(xs)
assert_almost_equal(kdepdf.all(), kdepdf3.all())
示例2: test_kde_bandwidth_method
# 需要导入模块: from matplotlib import mlab [as 别名]
# 或者: from matplotlib.mlab import GaussianKDE [as 别名]
def test_kde_bandwidth_method(self):
np.random.seed(8765678)
n_basesample = 50
xn = np.random.randn(n_basesample)
# Default
gkde = mlab.GaussianKDE(xn)
# Supply a callable
gkde2 = mlab.GaussianKDE(xn, 'scott')
# Supply a scalar
gkde3 = mlab.GaussianKDE(xn, bw_method=gkde.factor)
xs = np.linspace(-7, 7, 51)
kdepdf = gkde.evaluate(xs)
kdepdf2 = gkde2.evaluate(xs)
assert kdepdf.all() == kdepdf2.all()
kdepdf3 = gkde3.evaluate(xs)
assert kdepdf.all() == kdepdf3.all()
示例3: test_kde_integer_input
# 需要导入模块: from matplotlib import mlab [as 别名]
# 或者: from matplotlib.mlab import GaussianKDE [as 别名]
def test_kde_integer_input(self):
"""Regression test for #1181."""
x1 = np.arange(5)
kde = mlab.GaussianKDE(x1)
y_expected = [0.13480721, 0.18222869, 0.19514935, 0.18222869,
0.13480721]
np.testing.assert_array_almost_equal(kde(x1), y_expected, decimal=6)
示例4: test_gaussian_kde_covariance_caching
# 需要导入模块: from matplotlib import mlab [as 别名]
# 或者: from matplotlib.mlab import GaussianKDE [as 别名]
def test_gaussian_kde_covariance_caching(self):
x1 = np.array([-7, -5, 1, 4, 5], dtype=np.float)
xs = np.linspace(-10, 10, num=5)
# These expected values are from scipy 0.10, before some changes to
# gaussian_kde. They were not compared with any external reference.
y_expected = [0.02463386, 0.04689208, 0.05395444, 0.05337754,
0.01664475]
# set it to the default bandwidth.
kde2 = mlab.GaussianKDE(x1, 'scott')
y2 = kde2(xs)
np.testing.assert_array_almost_equal(y_expected, y2, decimal=7)
示例5: test_no_data
# 需要导入模块: from matplotlib import mlab [as 别名]
# 或者: from matplotlib.mlab import GaussianKDE [as 别名]
def test_no_data(self):
"""Pass no data into the GaussianKDE class."""
assert_raises(ValueError, mlab.GaussianKDE, [])
示例6: test_single_dataset_element
# 需要导入模块: from matplotlib import mlab [as 别名]
# 或者: from matplotlib.mlab import GaussianKDE [as 别名]
def test_single_dataset_element(self):
"""Pass a single dataset element into the GaussianKDE class."""
assert_raises(ValueError, mlab.GaussianKDE, [42])
示例7: test_silverman_singledim_dataset
# 需要导入模块: from matplotlib import mlab [as 别名]
# 或者: from matplotlib.mlab import GaussianKDE [as 别名]
def test_silverman_singledim_dataset(self):
"""Use a single dimension list as the dataset and test silverman's
output."""
x1 = np.array([-7, -5, 1, 4, 5])
mygauss = mlab.GaussianKDE(x1, "silverman")
y_expected = 0.76770389927475502
assert_almost_equal(mygauss.covariance_factor(), y_expected, 7)
示例8: test_scott_multidim_dataset
# 需要导入模块: from matplotlib import mlab [as 别名]
# 或者: from matplotlib.mlab import GaussianKDE [as 别名]
def test_scott_multidim_dataset(self):
"""Use a multi-dimensional array as the dataset and test scott's output
"""
x1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
assert_raises(np.linalg.LinAlgError, mlab.GaussianKDE, x1, "scott")
示例9: test_scott_singledim_dataset
# 需要导入模块: from matplotlib import mlab [as 别名]
# 或者: from matplotlib.mlab import GaussianKDE [as 别名]
def test_scott_singledim_dataset(self):
"""Use a single-dimensional array as the dataset and test scott's
output"""
x1 = np.array([-7, -5, 1, 4, 5])
mygauss = mlab.GaussianKDE(x1, "scott")
y_expected = 0.72477966367769553
assert_almost_equal(mygauss.covariance_factor(), y_expected, 7)
示例10: test_scalar_empty_dataset
# 需要导入模块: from matplotlib import mlab [as 别名]
# 或者: from matplotlib.mlab import GaussianKDE [as 别名]
def test_scalar_empty_dataset(self):
"""Use an empty array as the dataset and test the scalar's cov factor
"""
assert_raises(ValueError, mlab.GaussianKDE, [], bw_method=5)
示例11: test_scalar_covariance_dataset
# 需要导入模块: from matplotlib import mlab [as 别名]
# 或者: from matplotlib.mlab import GaussianKDE [as 别名]
def test_scalar_covariance_dataset(self):
"""Use a dataset and test a scalar's cov factor
"""
np.random.seed(8765678)
n_basesample = 50
multidim_data = [np.random.randn(n_basesample) for i in range(5)]
kde = mlab.GaussianKDE(multidim_data, bw_method=0.5)
assert_equal(kde.covariance_factor(), 0.5)
示例12: test_callable_singledim_dataset
# 需要导入模块: from matplotlib import mlab [as 别名]
# 或者: from matplotlib.mlab import GaussianKDE [as 别名]
def test_callable_singledim_dataset(self):
"""Use a single-dimensional array as the dataset and test the
callable's cov factor"""
np.random.seed(8765678)
n_basesample = 50
multidim_data = np.random.randn(n_basesample)
kde = mlab.GaussianKDE(multidim_data, bw_method='silverman')
y_expected = 0.48438841363348911
assert_almost_equal(kde.covariance_factor(), y_expected, 7)
示例13: test_wrong_bw_method
# 需要导入模块: from matplotlib import mlab [as 别名]
# 或者: from matplotlib.mlab import GaussianKDE [as 别名]
def test_wrong_bw_method(self):
"""Test the error message that should be called when bw is invalid."""
np.random.seed(8765678)
n_basesample = 50
data = np.random.randn(n_basesample)
assert_raises(ValueError, mlab.GaussianKDE, data, bw_method="invalid")
示例14: test_evaluate_diff_dim
# 需要导入模块: from matplotlib import mlab [as 别名]
# 或者: from matplotlib.mlab import GaussianKDE [as 别名]
def test_evaluate_diff_dim(self):
"""Test the evaluate method when the dim's of dataset and points are
different dimensions"""
x1 = np.arange(3, 10, 2)
kde = mlab.GaussianKDE(x1)
x2 = np.arange(3, 12, 2)
y_expected = [
0.08797252, 0.11774109, 0.11774109, 0.08797252, 0.0370153
]
y = kde.evaluate(x2)
np.testing.assert_array_almost_equal(y, y_expected, 7)
示例15: test_evaluate_inv_dim
# 需要导入模块: from matplotlib import mlab [as 别名]
# 或者: from matplotlib.mlab import GaussianKDE [as 别名]
def test_evaluate_inv_dim(self):
""" Invert the dimensions. i.e., Give the dataset a dimension of
1 [3,2,4], and the points will have a dimension of 3 [[3],[2],[4]].
ValueError should be raised"""
np.random.seed(8765678)
n_basesample = 50
multidim_data = np.random.randn(n_basesample)
kde = mlab.GaussianKDE(multidim_data)
x2 = [[1], [2], [3]]
assert_raises(ValueError, kde.evaluate, x2)