本文整理汇总了Python中matplotlib.image.AxesImage方法的典型用法代码示例。如果您正苦于以下问题:Python image.AxesImage方法的具体用法?Python image.AxesImage怎么用?Python image.AxesImage使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.image
的用法示例。
在下文中一共展示了image.AxesImage方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _
# 需要导入模块: from matplotlib import image [as 别名]
# 或者: from matplotlib.image import AxesImage [as 别名]
def _(artist, event):
if type(artist) != AxesImage:
# Skip and warn on subclasses (`NonUniformImage`, `PcolorImage`) as
# they do not implement `contains` correctly. Even if they did, they
# would not support moving as we do not know where a given index maps
# back physically.
return compute_pick.dispatch(object)(artist, event)
contains, _ = artist.contains(event)
if not contains:
return
ns = np.asarray(artist.get_array().shape[:2])[::-1] # (y, x) -> (x, y)
xy = np.array([event.xdata, event.ydata])
xmin, xmax, ymin, ymax = artist.get_extent()
# Handling of "upper" origin copied from AxesImage.get_cursor_data.
if artist.origin == "upper":
ymin, ymax = ymax, ymin
low, high = np.array([[xmin, ymin], [xmax, ymax]])
idxs = ((xy - low) / (high - low) * ns).astype(int)[::-1]
target = _with_attrs(xy, index=tuple(idxs))
return Selection(artist, target, 0, None, None)
示例2: view
# 需要导入模块: from matplotlib import image [as 别名]
# 或者: from matplotlib.image import AxesImage [as 别名]
def view(self, figsize=(5, 5)) -> Tuple[Figure, AxesImage]:
"""View the current state of the board
Parameters
----------
figsize : tuple
Size of the output figure
Returns
-------
(:obj:`matplotlib.figure.Figure`, :obj:`matplotlib.image.AxesImage`)
Graphical view of the board
"""
fig = plt.figure(figsize=figsize)
ax = fig.add_axes([0, 0, 1, 1], xticks=[], yticks=[], frameon=False)
im = ax.imshow(self.state, cmap=plt.cm.binary, interpolation="nearest")
im.set_clim(-0.05, 1)
return fig, im
示例3: view
# 需要导入模块: from matplotlib import image [as 别名]
# 或者: from matplotlib.image import AxesImage [as 别名]
def view(self, figsize=(5, 5)) -> Tuple[Figure, AxesImage]:
"""View the lifeform
Returns
-------
matplotlib.axes._subplots.AxesSubplot
Graphical view of the lifeform
"""
fig = plt.figure(figsize=figsize)
ax = fig.add_axes([0, 0, 1, 1], xticks=[], yticks=[], frameon=False)
im = ax.imshow(
self.layout, cmap=plt.cm.binary, interpolation="nearest"
)
im.set_clim(-0.05, 1)
return fig, im
示例4: __init__
# 需要导入模块: from matplotlib import image [as 别名]
# 或者: from matplotlib.image import AxesImage [as 别名]
def __init__(self, axes, model, interpolation="nearest", aspect="auto"):
super(SliceView, self).__init__()
data = np.zeros((1, 1))
self._image = axes.imshow(data, interpolation=interpolation, aspect=aspect, origin='upper')
""" :type: AxesImage """
self._model = model
""" :type: SliceModel """
style = {"fill": False,
"alpha": 1,
"color": 'black',
"linestyle": 'dotted',
"linewidth": 0.75
}
self._vertical_indicator = patches.Rectangle((-0.5, -0.5), 1, model.height, **style)
self._horizontal_indicator = patches.Rectangle((-0.5, -0.5), model.width, 1, **style)
self._zoom_factor = 1.0
self._view_limits = None
self._min_xlim = 0
self._max_xlim = model.width
self._min_ylim = 0
self._max_ylim = model.height
示例5: test_spatial_filter
# 需要导入模块: from matplotlib import image [as 别名]
# 或者: from matplotlib.image import AxesImage [as 别名]
def test_spatial_filter():
"""Test plotting a spatial filter directly."""
# Plot filter
_, spatial_filter, _ = utils.create_default_fake_filter()
visualizations.spatial(spatial_filter)
data = spatial_filter - spatial_filter.mean()
# Verify data plotted correctly
img = plt.findobj(plt.gca(), AxesImage)[0]
assert np.all(img.get_array() == data), 'Spatial filter data is incorrect.'
plt.close(plt.gcf())
# Verify data plotted correctly when giving a maximum value
maxval = np.abs(spatial_filter).max()
visualizations.spatial(spatial_filter, maxval=maxval)
img = plt.findobj(plt.gca(), AxesImage)[0]
assert np.all(img.get_array() == spatial_filter), \
'Spatial filter data incorrect when passing explicit maxval'
assert np.all(img.get_clim() == np.array((-maxval, maxval))), \
'Spatial filter color limits not set correctly.'
plt.close(plt.gcf())
示例6: test_board_view
# 需要导入模块: from matplotlib import image [as 别名]
# 或者: from matplotlib.image import AxesImage [as 别名]
def test_board_view():
"""Test if a figure and image is returned whenever view is called"""
board = Board(size=(3, 3))
board.add(lf.Blinker(length=3), loc=(0, 1))
fig, im = board.view()
assert isinstance(fig, Figure)
assert isinstance(im, AxesImage)
示例7: test_lifeform_view
# 需要导入模块: from matplotlib import image [as 别名]
# 或者: from matplotlib.image import AxesImage [as 别名]
def test_lifeform_view(lifeform, cls):
"""Test if getting the lifeform view returns the expected tuple"""
result = cls().view()
assert len(result) == 2
assert isinstance(result[0], Figure)
assert isinstance(result[1], AxesImage)
示例8: setCanvas
# 需要导入模块: from matplotlib import image [as 别名]
# 或者: from matplotlib.image import AxesImage [as 别名]
def setCanvas(self, **kwargs):
"""Set canvas to plot in
:param figure: Matplotlib figure to plot in
:type figure: :py:class:`matplotlib.Figure`
:param axes: Matplotlib axes to plot in
:type axes: :py:class:`matplotlib.Axes`
:raises: TypeError
"""
axes = kwargs.get('axes', None)
figure = kwargs.get('figure', None)
if isinstance(axes, plt.Axes):
self.fig, self.ax = axes.get_figure(), axes
self._show_plt = False
elif isinstance(figure, plt.Figure):
self.fig, self.ax = figure, figure.gca()
self._show_plt = False
elif axes is None and figure is None and self.fig is None:
self.fig, self.ax = plt.subplots(1, 1)
self._show_plt = True
else:
raise TypeError('axes has to be of type matplotlib.Axes. '
'figure has to be of type matplotlib.Figure')
self.image = AxesImage(self.ax)
self.ax.add_artist(self.image)
示例9: data
# 需要导入模块: from matplotlib import image [as 别名]
# 或者: from matplotlib.image import AxesImage [as 别名]
def data(self):
""" Data passed to matplotlib.image.AxesImage """
return self._data
示例10: plot
# 需要导入模块: from matplotlib import image [as 别名]
# 或者: from matplotlib.image import AxesImage [as 别名]
def plot(self, component='displacement', **kwargs):
"""Plots any component fom Scene
The following components are recognizes
- 'cartesian.dE'
- 'cartesian.dN'
- 'cartesian.dU'
- 'displacement'
- 'phi'
- 'theta'
:param **kwargs: Keyword args forwarded to `matplotlib.plt.imshow()`
:type **kwargs: {dict}
:param component: Component to plot
['cartesian.dE', 'cartesian.dN', 'cartesian.dU',
'displacement', 'phi', 'theta']
:type component: {string}, optional
:param axes: Axes instance to plot in, defaults to None
:type axes: :py:class:`matplotlib.Axes`, optional
:param figure: Figure instance to plot in, defaults to None
:type figure: :py:class:`matplotlib.Figure`, optional
:param **kwargs: kwargs are passed into `plt.imshow`
:type **kwargs: dict
:returns: Imshow instance
:rtype: :py:class:`matplotlib.image.AxesImage`
:raises: AttributeError
"""
self._initImagePlot(**kwargs)
self.component = component
self.title = self.components_available[component]
if self._show_plt:
plt.show()
示例11: onpick4
# 需要导入模块: from matplotlib import image [as 别名]
# 或者: from matplotlib.image import AxesImage [as 别名]
def onpick4(event):
artist = event.artist
if isinstance(artist, AxesImage):
im = artist
A = im.get_array()
print('onpick4 image', A.shape)
示例12: set_transparency
# 需要导入模块: from matplotlib import image [as 别名]
# 或者: from matplotlib.image import AxesImage [as 别名]
def set_transparency(self, value):
if self.mode > 3:
self.trans = value
if bool(self.flipimage % 4):
self.view_flip_image()
else:
self.view_image()
else:
for item in self.ax1.get_children():
if not type(item) == AxesImage:
self.artist_list.append(item)
for artist in self.artist_list:
artist.set_alpha(value)
self.figure.canvas.draw()
示例13: plot_weights
# 需要导入模块: from matplotlib import image [as 别名]
# 或者: from matplotlib.image import AxesImage [as 别名]
def plot_weights(
weights: torch.Tensor,
wmin: Optional[float] = 0,
wmax: Optional[float] = 1,
im: Optional[AxesImage] = None,
figsize: Tuple[int, int] = (5, 5),
cmap: str = "hot_r",
) -> AxesImage:
# language=rst
"""
Plot a connection weight matrix.
:param weights: Weight matrix of ``Connection`` object.
:param wmin: Minimum allowed weight value.
:param wmax: Maximum allowed weight value.
:param im: Used for re-drawing the weights plot.
:param figsize: Horizontal, vertical figure size in inches.
:param cmap: Matplotlib colormap.
:return: ``AxesImage`` for re-drawing the weights plot.
"""
local_weights = weights.detach().clone().cpu().numpy()
if not im:
fig, ax = plt.subplots(figsize=figsize)
im = ax.imshow(local_weights, cmap=cmap, vmin=wmin, vmax=wmax)
div = make_axes_locatable(ax)
cax = div.append_axes("right", size="5%", pad=0.05)
ax.set_xticks(())
ax.set_yticks(())
ax.set_aspect("auto")
plt.colorbar(im, cax=cax)
fig.tight_layout()
else:
im.set_data(local_weights)
return im
示例14: test_play_sta
# 需要导入模块: from matplotlib import image [as 别名]
# 或者: from matplotlib.image import AxesImage [as 别名]
def test_play_sta():
"""Test playing an STA as a movie by comparing a known frame."""
sta = utils.create_default_fake_filter()[-1]
sta -= sta.mean()
frame = utils.get_default_movie_frame()
animation = visualizations.play_sta(sta)
animation._func(frame)
imgdata = plt.findobj(plt.gcf(), AxesImage)[0].get_array()
imgdata -= imgdata.mean()
data = sta[frame, ...]
data -= data.mean()
assert np.allclose(imgdata, data), \
'visualizations.play_sta did not animate the 3D sta correctly.'
示例15: plot_input
# 需要导入模块: from matplotlib import image [as 别名]
# 或者: from matplotlib.image import AxesImage [as 别名]
def plot_input(
image: torch.Tensor,
inpt: torch.Tensor,
label: Optional[int] = None,
axes: List[Axes] = None,
ims: List[AxesImage] = None,
figsize: Tuple[int, int] = (8, 4),
) -> Tuple[List[Axes], List[AxesImage]]:
# language=rst
"""
Plots a two-dimensional image and its corresponding spike-train representation.
:param image: A 2D array of floats depicting an input image.
:param inpt: A 2D array of floats depicting an image's spike-train encoding.
:param label: Class label of the input data.
:param axes: Used for re-drawing the input plots.
:param ims: Used for re-drawing the input plots.
:param figsize: Horizontal, vertical figure size in inches.
:return: Tuple of ``(axes, ims)`` used for re-drawing the input plots.
"""
local_image = image.detach().clone().cpu().numpy()
local_inpy = inpt.detach().clone().cpu().numpy()
if axes is None:
fig, axes = plt.subplots(1, 2, figsize=figsize)
ims = (
axes[0].imshow(local_image, cmap="binary"),
axes[1].imshow(local_inpy, cmap="binary"),
)
if label is None:
axes[0].set_title("Current image")
else:
axes[0].set_title("Current image (label = %d)" % label)
axes[1].set_title("Reconstruction")
for ax in axes:
ax.set_xticks(())
ax.set_yticks(())
fig.tight_layout()
else:
if label is not None:
axes[0].set_title("Current image (label = %d)" % label)
ims[0].set_data(local_image)
ims[1].set_data(local_inpy)
return axes, ims