本文整理汇总了Python中matplotlib.dates.num2date方法的典型用法代码示例。如果您正苦于以下问题:Python dates.num2date方法的具体用法?Python dates.num2date怎么用?Python dates.num2date使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.dates
的用法示例。
在下文中一共展示了dates.num2date方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: send_command
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import num2date [as 别名]
def send_command(self, ser,command,eol,hex=False):
if hex:
command = self.hexify_command(command,eol)
else:
command = eol+command+eol
#print 'Command: %s \n ' % command.replace(eol,'')
sendtime = date2num(datetime.utcnow())
#print "Sending"
ser.write(command)
#print "Received something - interpretation"
response = self.lineread(ser,eol)
#print "interprete", response
receivetime = date2num(datetime.utcnow())
meantime = np.mean([receivetime,sendtime])
#print "Timediff", (receivetime-sendtime)*3600*24
return response, num2date(meantime).replace(tzinfo=None)
示例2: test_yearlocator_pytz
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import num2date [as 别名]
def test_yearlocator_pytz():
import pytz
tz = pytz.timezone('America/New_York')
x = [tz.localize(datetime.datetime(2010, 1, 1))
+ datetime.timedelta(i) for i in range(2000)]
locator = mdates.AutoDateLocator(interval_multiples=True, tz=tz)
locator.create_dummy_axis()
locator.set_view_interval(mdates.date2num(x[0])-1.0,
mdates.date2num(x[-1])+1.0)
np.testing.assert_allclose([733408.208333, 733773.208333, 734138.208333,
734503.208333, 734869.208333,
735234.208333, 735599.208333], locator())
expected = ['2009-01-01 00:00:00-05:00',
'2010-01-01 00:00:00-05:00', '2011-01-01 00:00:00-05:00',
'2012-01-01 00:00:00-05:00', '2013-01-01 00:00:00-05:00',
'2014-01-01 00:00:00-05:00', '2015-01-01 00:00:00-05:00']
st = list(map(str, mdates.num2date(locator(), tz=tz)))
assert st == expected
示例3: readGiopsIce
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import num2date [as 别名]
def readGiopsIce(lat,lon,datenum):
di = 0
for datei in datenum:
print datei
dt0= datetime.strptime(datei, "%Y-%m-%d %H:%M:%S")
dt1 = mdates.date2num(dt0)
# dt2 = mdates.num2date(dt1)
# print dt0,dt2
# taxis.append(dt1)
dayStr = str(dt0.year)+str(dt0.month).rjust(2,'0')+str(dt0.day).rjust(2,'0')
# print dayStr
ficePath = "/home/xuj/work/project/novaFloat/iceData/"
fname = ficePath+"giops_"+dayStr+"00_ice.nc"
cfile = Dataset(fname,'r')
aice = np.squeeze(cfile.variables["aice"][0,:,:])
return giopsIce
示例4: adjust_xlim
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import num2date [as 别名]
def adjust_xlim(ax, timemax, xlabel=False):
xlim = mdates.num2date(ax.get_xlim())
update = False
# remove timezone awareness to make them comparable
timemax = timemax.replace(tzinfo=None)
xlim[0] = xlim[0].replace(tzinfo=None)
xlim[1] = xlim[1].replace(tzinfo=None)
if timemax > xlim[1] - timedelta(minutes=30):
xmax = xlim[1] + timedelta(hours=6)
update = True
if update:
ax.set_xlim([xlim[0], xmax])
for spine in ax.spines.values():
ax.draw_artist(spine)
ax.draw_artist(ax.xaxis)
if xlabel:
ax.xaxis.set_minor_locator(mdates.AutoDateLocator())
ax.xaxis.set_minor_formatter(mdates.DateFormatter('%H:%M\n'))
ax.xaxis.set_major_locator(mdates.DayLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter('\n%b %d'))
示例5: test_drange
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import num2date [as 别名]
def test_drange():
"""
This test should check if drange works as expected, and if all the
rounding errors are fixed
"""
start = datetime.datetime(2011, 1, 1, tzinfo=mdates.UTC)
end = datetime.datetime(2011, 1, 2, tzinfo=mdates.UTC)
delta = datetime.timedelta(hours=1)
# We expect 24 values in drange(start, end, delta), because drange returns
# dates from an half open interval [start, end)
assert_equal(24, len(mdates.drange(start, end, delta)))
# if end is a little bit later, we expect the range to contain one element
# more
end = end + datetime.timedelta(microseconds=1)
assert_equal(25, len(mdates.drange(start, end, delta)))
# reset end
end = datetime.datetime(2011, 1, 2, tzinfo=mdates.UTC)
# and tst drange with "complicated" floats:
# 4 hours = 1/6 day, this is an "dangerous" float
delta = datetime.timedelta(hours=4)
daterange = mdates.drange(start, end, delta)
assert_equal(6, len(daterange))
assert_equal(mdates.num2date(daterange[-1]), end - delta)
示例6: __call__
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import num2date [as 别名]
def __call__(self, x, pos=0):
'Return the label for time x at position pos'
ind = int(np.round(x))
if ind >= len(self.dates) or ind < 0:
return ''
return num2date(self.dates[ind]).strftime(self.fmt)
示例7: test_drange
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import num2date [as 别名]
def test_drange():
"""
This test should check if drange works as expected, and if all the
rounding errors are fixed
"""
start = datetime.datetime(2011, 1, 1, tzinfo=mdates.UTC)
end = datetime.datetime(2011, 1, 2, tzinfo=mdates.UTC)
delta = datetime.timedelta(hours=1)
# We expect 24 values in drange(start, end, delta), because drange returns
# dates from an half open interval [start, end)
assert len(mdates.drange(start, end, delta)) == 24
# if end is a little bit later, we expect the range to contain one element
# more
end = end + datetime.timedelta(microseconds=1)
assert len(mdates.drange(start, end, delta)) == 25
# reset end
end = datetime.datetime(2011, 1, 2, tzinfo=mdates.UTC)
# and tst drange with "complicated" floats:
# 4 hours = 1/6 day, this is an "dangerous" float
delta = datetime.timedelta(hours=4)
daterange = mdates.drange(start, end, delta)
assert len(daterange) == 6
assert mdates.num2date(daterange[-1]) == (end - delta)
示例8: getTickDatetimeByXPosition
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import num2date [as 别名]
def getTickDatetimeByXPosition(self,xAxis):
"""mid
根据传入的x轴坐标值,返回其所代表的时间
"""
tickDatetimeRet = xAxis
minYearDatetimeNum = mpd.date2num(dt.datetime(1900,1,1))
if(xAxis > minYearDatetimeNum):
tickDatetime = mpd.num2date(xAxis).astimezone(pytz.timezone('utc'))
if(tickDatetime.year >=1900):
tickDatetimeRet = tickDatetime
return tickDatetimeRet
示例9: __getTickDatetimeByXPosition
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import num2date [as 别名]
def __getTickDatetimeByXPosition(self,xAxis):
"""mid
默认计算方式,用datetimeNum标记x轴
根据某个view中鼠标所在位置的x坐标获取其所在tick的time,xAxis可以是index,也可是一datetime转换而得到的datetimeNum
return:str
"""
tickDatetimeRet = xAxis
minYearDatetimeNum = mpd.date2num(dt.datetime(1900,1,1))
if(xAxis > minYearDatetimeNum):
tickDatetime = mpd.num2date(xAxis).astimezone(pytz.timezone('utc'))
if(tickDatetime.year >=1900):
tickDatetimeRet = tickDatetime
return tickDatetimeRet
#----------------------------------------------------------------------
示例10: plotYearly
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import num2date [as 别名]
def plotYearly(dictframe, ax, uncertainty, color='#0072B2'):
if ax is None:
figY = plt.figure(facecolor='w', figsize=(10, 6))
ax = figY.add_subplot(111)
else:
figY = ax.get_figure()
##
# Find the max index for an entry of each month
##
months = dictframe.ds.dt.month
ind = []
for month in range(1,13):
ind.append(max(months[months == month].index.tolist()))
##
# Plot from the minimum of those maximums on (this will almost certainly result in only 1 year plotted)
##
ax.plot(dictframe['ds'][min(ind):], dictframe['yearly'][min(ind):], ls='-', c=color)
if uncertainty:
ax.fill_between(dictframe['ds'].values[min(ind):], dictframe['yearly_lower'][min(ind):], dictframe['yearly_upper'][min(ind):], color=color, alpha=0.2)
ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
months = MonthLocator(range(1, 13), bymonthday=1, interval=2)
ax.xaxis.set_major_formatter(FuncFormatter(
lambda x, pos=None: '{dt:%B} {dt.day}'.format(dt=num2date(x))))
ax.xaxis.set_major_locator(months)
ax.set_xlabel('Day of year')
ax.set_ylabel('yearly')
figY.tight_layout()
return figY
示例11: plot_date_bars
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import num2date [as 别名]
def plot_date_bars(bin_data, bin_edges, title, ylabel, fname):
"""
Semi-generic function to plot a bar graph, x-label is fixed to "date" and the
x-ticks are formatted accordingly.
To plot a histogram, the histogram data must be calculated manually outside
this function, either manually or using :py:func`numpy.histogram`.
:param bin_data: list of data for each bin
:param bin_edges: list of bin edges (:py:class:`datetime.date` objects), its
length must be ``len(data)+1``
:param title: title of the plot
:param ylabel: label of y-axis
:param fname: output file name
"""
import matplotlib.pyplot as plt
from matplotlib.dates import date2num, num2date
from matplotlib import ticker
plt.figure() # clear previous figure
plt.title(title)
plt.xlabel("date")
plt.ylabel(ylabel)
# plot the bars, width of the bins is assumed to be fixed
plt.bar(date2num(bin_edges[:-1]), bin_data, width=date2num(bin_edges[1]) - date2num(bin_edges[0]))
# x-ticks formatting
plt.gca().xaxis.set_major_formatter(ticker.FuncFormatter(lambda numdate, _: num2date(numdate).strftime('%Y-%m-%d')))
plt.gcf().autofmt_xdate()
plt.tick_params(axis="x", which="both", direction="out")
plt.xticks([date2num(ts) for ts in bin_edges if ts.month % 12 == 1])
plt.savefig(fname, papertype="a4")
示例12: main
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import num2date [as 别名]
def main(args):
_, fetch = load_dataset(SP500, shuffle=False)
dates, returns = fetch()
init_rng_key, sample_rng_key = random.split(random.PRNGKey(args.rng_seed))
model_info = initialize_model(init_rng_key, model, model_args=(returns,))
init_kernel, sample_kernel = hmc(model_info.potential_fn, algo='NUTS')
hmc_state = init_kernel(model_info.param_info, args.num_warmup, rng_key=sample_rng_key)
hmc_states = fori_collect(args.num_warmup, args.num_warmup + args.num_samples, sample_kernel, hmc_state,
transform=lambda hmc_state: model_info.postprocess_fn(hmc_state.z),
progbar=False if "NUMPYRO_SPHINXBUILD" in os.environ else True)
print_results(hmc_states, dates)
fig, ax = plt.subplots(1, 1)
dates = mdates.num2date(mdates.datestr2num(dates))
ax.plot(dates, returns, lw=0.5)
# format the ticks
ax.xaxis.set_major_locator(mdates.YearLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
ax.xaxis.set_minor_locator(mdates.MonthLocator())
ax.plot(dates, jnp.exp(hmc_states['s'].T), 'r', alpha=0.01)
legend = ax.legend(['returns', 'volatility'], loc='upper right')
legend.legendHandles[1].set_alpha(0.6)
ax.set(xlabel='time', ylabel='returns', title='Volatility of S&P500 over time')
plt.savefig("stochastic_volatility_plot.pdf")
plt.tight_layout()
示例13: ploteasy
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import num2date [as 别名]
def ploteasy(stream):
'''
DEFINITION:
Plots all data in stream. That's it.
This function has no formatting options whatsoever.
Very useful for quick & easy data evaluation.
PARAMETERS:
Variables:
- stream: (DataStream object) Stream to plot
RETURNS:
- plot: (Pyplot plot) Returns plot as plt.show()
EXAMPLE:
>>> ploteasy(somedata)
'''
keys = stream._get_key_headers(numerical=True)
if len(keys) > 9:
keys = keys[:8]
try:
sensorid = stream.header['SensorID']
except:
sensorid = ''
try:
datadate = datetime.strftime(num2date(stream[0].time),'%Y-%m-%d')
except:
datadate = datetime.strftime(num2date(stream.ndarray[0][0]),'%Y-%m-%d')
plottitle = "%s (%s)" % (sensorid,datadate)
logger.info("Plotting keys:", keys)
plot_new(stream, keys,
confinex = True,
plottitle = plottitle)
#####################################################################
# #
# MAIN PLOTTING FUNCTIONS #
# (for plotting geomagnetic data) #
# #
#####################################################################
示例14: interpHovmoller
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import num2date [as 别名]
def interpHovmoller(self,target_track,window=4,align='backward'):
r"""
Creates storm-centered interpolated data in polar coordinates for each timestep, and averages azimuthally to create a hovmoller.
target_track = dict
dict of either archer or hurdat data (contains lat, lon, time/date)
window = hours
sets window in hours relative to the time of center pass for interpolation use.
"""
#Store the dataframe containing recon data
tmpRecon = self.dfRecon.copy()
#Sets window as a timedelta object
window = timedelta(seconds=int(window*3600))
#Error check for time dimension name
if 'time' not in target_track.keys():
target_track['time']=target_track['date']
#Find times of all center passes
centerTimes = tmpRecon[tmpRecon['iscenter']==1]['time']
#Data is already centered on center time, so shift centerTimes to the end of the window
spaceInterpTimes = [t+window/2 for t in centerTimes]
#Takes all times within track dictionary that fall between spaceInterpTimes
trackTimes = [t for t in target_track['time'] if min(spaceInterpTimes)<t<max(spaceInterpTimes)]
#Iterate through all data surrounding a center pass given the window previously specified, and create a polar
#grid for each
start_time = dt.now()
print("--> Starting interpolation")
spaceInterpData={}
for time in spaceInterpTimes:
#Temporarily set dfRecon to this centered subset window
self.dfRecon = tmpRecon[(tmpRecon['time']>time-window) & (tmpRecon['time']<=time)]
print(time)
grid_rho, grid_phi, grid_z_pol = self.interpPol() #Create polar centered grid
grid_azim_mean = np.mean(grid_z_pol,axis=0) #Average azimuthally
spaceInterpData[time] = grid_azim_mean #Append data for this time step to dictionary
#Sets dfRecon back to original full data
self.dfRecon = tmpRecon
reconArray = np.array([i for i in spaceInterpData.values()])
#Interpolate over every half hour
newTimes = np.arange(mdates.date2num(trackTimes[0]),mdates.date2num(trackTimes[-1])+1e-3,1/48)
oldTimes = mdates.date2num(spaceInterpTimes)
reconTimeInterp=np.apply_along_axis(lambda x: np.interp(newTimes,oldTimes,x),
axis=0,arr=reconArray)
time_elapsed = dt.now() - start_time
tsec = str(round(time_elapsed.total_seconds(),2))
print(f"--> Completed interpolation ({tsec} seconds)")
#Output RMW and hovmoller data and store as an attribute in the object
self.rmw = grid_rho[0,np.nanargmax(reconTimeInterp,axis=1)]
self.Hovmoller = {'time':mdates.num2date(newTimes),'radius':grid_rho[0,:],'hovmoller':reconTimeInterp}
return self.Hovmoller