本文整理汇总了Python中matplotlib.dates方法的典型用法代码示例。如果您正苦于以下问题:Python matplotlib.dates方法的具体用法?Python matplotlib.dates怎么用?Python matplotlib.dates使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib
的用法示例。
在下文中一共展示了matplotlib.dates方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: find_previous_inflow_date
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import dates [as 别名]
def find_previous_inflow_date(df, inflow_dates):
"""
Calculates no of days from inflow event for dates in df
:param df: Input df
:param inflow_dates:datetime index of inflow pandas dataframe
:return:
"""
# insert_dummy_columns
df['days_from_inflow'] = 0
for date in df.index:
deltas = inflow_dates - date
days_from_inflow = np.max([n for n in deltas.days if n < 0])
df.loc[date, 'days_from_inflow'] = np.abs(days_from_inflow)
return df
# print len(inflow_days_591_df.index)
示例2: extractWeekendHighlights
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import dates [as 别名]
def extractWeekendHighlights(dates):
weekendsOut = []
weekendSearch = [5, 6]
weekendStart = None
for i, date in enumerate(dates):
if date.weekday() in weekendSearch:
if weekendStart is None:
# Mark start of weekend
weekendStart = i
else:
if weekendStart is not None:
# Mark end of weekend
weekendsOut.append((
weekendStart, i, WEEKEND_HIGHLIGHT_COLOR, HIGHLIGHT_ALPHA
))
weekendStart = None
# Cap it off if we're still in the middle of a weekend
if weekendStart is not None:
weekendsOut.append((
weekendStart, len(dates)-1, WEEKEND_HIGHLIGHT_COLOR, HIGHLIGHT_ALPHA
))
return weekendsOut
示例3: datestr2num
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import dates [as 别名]
def datestr2num(d, default=None):
"""
Convert a date string to a datenum using
:func:`dateutil.parser.parse`.
Parameters
----------
d : string or sequence of strings
The dates to convert.
default : datetime instance
The default date to use when fields are missing in `d`.
"""
if cbook.is_string_like(d):
dt = dateutil.parser.parse(d, default=default)
return date2num(dt)
else:
if default is not None:
d = [dateutil.parser.parse(s, default=default) for s in d]
d = np.asarray(d)
if not d.size:
return d
return date2num(_dateutil_parser_parse_np_vectorized(d))
示例4: datestr2num
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import dates [as 别名]
def datestr2num(d, default=None):
"""
Convert a date string to a datenum using
:func:`dateutil.parser.parse`.
Parameters
----------
d : string or sequence of strings
The dates to convert.
default : datetime instance, optional
The default date to use when fields are missing in *d*.
"""
if isinstance(d, str):
dt = dateutil.parser.parse(d, default=default)
return date2num(dt)
else:
if default is not None:
d = [dateutil.parser.parse(s, default=default) for s in d]
d = np.asarray(d)
if not d.size:
return d
return date2num(_dateutil_parser_parse_np_vectorized(d))
示例5: tick_values
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import dates [as 别名]
def tick_values(self, vmin, vmax):
delta = relativedelta(vmax, vmin)
# We need to cap at the endpoints of valid datetime
try:
start = vmin - delta
except (ValueError, OverflowError):
start = _from_ordinalf(1.0)
try:
stop = vmax + delta
except (ValueError, OverflowError):
# The magic number!
stop = _from_ordinalf(3652059.9999999)
self.rule.set(dtstart=start, until=stop)
dates = self.rule.between(vmin, vmax, True)
if len(dates) == 0:
return date2num([vmin, vmax])
return self.raise_if_exceeds(date2num(dates))
示例6: __init__
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import dates [as 别名]
def __init__(self, byweekday=1, interval=1, tz=None):
"""
Mark every weekday in *byweekday*; *byweekday* can be a number or
sequence.
Elements of *byweekday* must be one of MO, TU, WE, TH, FR, SA,
SU, the constants from :mod:`dateutil.rrule`, which have been
imported into the :mod:`matplotlib.dates` namespace.
*interval* specifies the number of weeks to skip. For example,
``interval=2`` plots every second week.
"""
if isinstance(byweekday, np.ndarray):
# This fixes a bug in dateutil <= 2.3 which prevents the use of
# numpy arrays in (among other things) the bymonthday, byweekday
# and bymonth parameters.
[x.item() for x in byweekday.astype(int)]
rule = rrulewrapper(DAILY, byweekday=byweekday,
interval=interval, **self.hms0d)
RRuleLocator.__init__(self, rule, tz)
示例7: __init__
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import dates [as 别名]
def __init__(self, *args, **kwargs):
super(NuPICPlotOutput, self).__init__(*args, **kwargs)
self.names = [self.name]
# Turn matplotlib interactive mode on.
plt.ion()
self.dates = []
self.convertedDates = []
self.actualValues = []
self.predictedValues = []
self.actualLines = []
self.predictedLines = []
self.linesInitialized = False
self.graphs = []
plotCount = len(self.names)
plotHeight = max(plotCount * 3, 6)
fig = plt.figure(figsize=(14, plotHeight))
gs = gridspec.GridSpec(plotCount, 1)
for index in range(len(self.names)):
self.graphs.append(fig.add_subplot(gs[index, 0]))
plt.title(self.names[index])
plt.ylabel('Frequency Bucket')
plt.xlabel('Seconds')
plt.tight_layout()
示例8: initializeLines
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import dates [as 别名]
def initializeLines(self, timestamps):
for index in range(len(self.names)):
print "initializing %s" % self.names[index]
# graph = self.graphs[index]
self.dates.append(deque([timestamps[index]] * WINDOW, maxlen=WINDOW))
# print self.dates[index]
# self.convertedDates.append(deque(
# [date2num(date) for date in self.dates[index]], maxlen=WINDOW
# ))
self.actualValues.append(deque([0.0] * WINDOW, maxlen=WINDOW))
self.predictedValues.append(deque([0.0] * WINDOW, maxlen=WINDOW))
actualPlot, = self.graphs[index].plot(
self.dates[index], self.actualValues[index]
)
self.actualLines.append(actualPlot)
predictedPlot, = self.graphs[index].plot(
self.dates[index], self.predictedValues[index]
)
self.predictedLines.append(predictedPlot)
self.linesInitialized = True
示例9: plotFI
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import dates [as 别名]
def plotFI(dt, fi, mintime):
"""
Creates subplot for frequency index scatterplot
dt: Array containing times of repeaters
fi: Array containing frequency index values of repeaters
mintime: Minimum time to be plotted
"""
fig = bokehFigure(title='Frequency Index')
fig.yaxis.axis_label = 'FI'
fig.circle(matplotlib.dates.num2date(dt[dt>=mintime]), fi[dt>=mintime], color='red',
line_alpha=0, size=3, fill_alpha=0.5)
return fig
示例10: PlotDataFrame
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import dates [as 别名]
def PlotDataFrame(df:pd.DataFrame, title:str, xlabel:str, ylabel:str, adjustScale:bool=True, fileName:str = '', dpi:int = 600):
if df.shape[0] >= 4:
PlotInitDefaults()
ax=df.plot(title=title, linewidth=.75)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.tick_params(axis='x', rotation=70)
ax.grid(b=True, which='major', color='black', linestyle='solid', linewidth=.5)
ax.grid(b=True, which='minor', color='0.65', linestyle='solid', linewidth=.3)
if adjustScale:
dates= df.index.get_level_values('Date')
minDate = dates.min()
maxDate = dates.max()
PlotScalerDateAdjust(minDate, maxDate, ax)
if not fileName =='':
if not fileName[-4] == '.': fileName+= '.png'
plt.savefig(fileName, dpi=dpi)
else:
fig = plt.figure(1)
fig.canvas.set_window_title(title)
plt.show()
plt.close('all')
示例11: _render_volume
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import dates [as 别名]
def _render_volume(self, current_step, net_worth, dates, step_range):
self.volume_ax.clear()
volume = np.array(self.df['Volume'].values[step_range])
pos = self.df['Open'].values[step_range] - \
self.df['Close'].values[step_range] < 0
neg = self.df['Open'].values[step_range] - \
self.df['Close'].values[step_range] > 0
# Color volume bars based on price direction on that date
self.volume_ax.bar(dates[pos], volume[pos], color=UP_COLOR,
alpha=0.4, width=1, align='center')
self.volume_ax.bar(dates[neg], volume[neg], color=DOWN_COLOR,
alpha=0.4, width=1, align='center')
# Cap volume axis height below price chart and hide ticks
self.volume_ax.set_ylim(0, max(volume) / VOLUME_CHART_HEIGHT)
self.volume_ax.yaxis.set_ticks([])
示例12: render
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import dates [as 别名]
def render(self, current_step, net_worth, trades, window_size=40):
self.net_worths[current_step] = net_worth
window_start = max(current_step - window_size, 0)
step_range = range(window_start, current_step + 1)
# Format dates as timestamps, necessary for candlestick graph
dates = np.array([date2num(x)
for x in self.df['Date'].values[step_range]])
self._render_net_worth(current_step, net_worth, step_range, dates)
self._render_price(current_step, net_worth, dates, step_range)
self._render_volume(current_step, net_worth, dates, step_range)
self._render_trades(current_step, trades, step_range)
# Format the date ticks to be more easily read
self.price_ax.set_xticklabels(self.df['Date'].values[step_range], rotation=45,
horizontalalignment='right')
# Hide duplicate net worth date labels
plt.setp(self.net_worth_ax.get_xticklabels(), visible=False)
# Necessary to view frames before they are unrendered
plt.pause(0.001)
示例13: print_results
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import dates [as 别名]
def print_results(posterior, dates):
def _print_row(values, row_name=''):
quantiles = jnp.array([0.2, 0.4, 0.5, 0.6, 0.8])
row_name_fmt = '{:>8}'
header_format = row_name_fmt + '{:>12}' * 5
row_format = row_name_fmt + '{:>12.3f}' * 5
columns = ['(p{})'.format(q * 100) for q in quantiles]
q_values = jnp.quantile(values, quantiles, axis=0)
print(header_format.format('', *columns))
print(row_format.format(row_name, *q_values))
print('\n')
print('=' * 20, 'sigma', '=' * 20)
_print_row(posterior['sigma'])
print('=' * 20, 'nu', '=' * 20)
_print_row(posterior['nu'])
print('=' * 20, 'volatility', '=' * 20)
for i in range(0, len(dates), 180):
_print_row(jnp.exp(posterior['s'][:, i]), dates[i])
示例14: save_roast_graph_csv
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import dates [as 别名]
def save_roast_graph_csv(self):
try:
file_name = QtWidgets.QFileDialog.getSaveFileName(
QtWidgets.QWidget(),
'Save Roast Graph CSV',
os.path.expanduser('~/'),
'CSV (*.csv);;All Files (*)')
with open(file_name[0], 'w') as outfile:
outfile.write("Seconds,Temperature\n")
if not self.graphXValueList:
return
init_time = matplotlib.dates.num2date(self.graphXValueList[0])
for x_val,y_val in zip(self.graphXValueList,self.graphYValueList):
x_time = matplotlib.dates.num2date(x_val)
elapsed_seconds = (x_time - init_time).seconds
outfile.write("{0},{1}\n".format(elapsed_seconds, y_val))
except FileNotFoundError:
# Occurs if file browser is canceled
pass
else:
pass
示例15: _dt64_to_ordinalf
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import dates [as 别名]
def _dt64_to_ordinalf(d):
"""
Convert `numpy.datetime64` or an ndarray of those types to Gregorian
date as UTC float. Roundoff is via float64 precision. Practically:
microseconds for dates between 290301 BC, 294241 AD, milliseconds for
larger dates (see `numpy.datetime64`). Nanoseconds aren't possible
because we do times compared to ``0001-01-01T00:00:00`` (plus one day).
"""
# the "extra" ensures that we at least allow the dynamic range out to
# seconds. That should get out to +/-2e11 years.
extra = (d - d.astype('datetime64[s]')).astype('timedelta64[ns]')
t0 = np.datetime64('0001-01-01T00:00:00', 's')
dt = (d.astype('datetime64[s]') - t0).astype(np.float64)
dt += extra.astype(np.float64) / 1.0e9
dt = dt / SEC_PER_DAY + 1.0
NaT_int = np.datetime64('NaT').astype(np.int64)
d_int = d.astype(np.int64)
try:
dt[d_int == NaT_int] = np.nan
except TypeError:
if d_int == NaT_int:
dt = np.nan
return dt