本文整理汇总了Python中matplotlib.dates.MonthLocator方法的典型用法代码示例。如果您正苦于以下问题:Python dates.MonthLocator方法的具体用法?Python dates.MonthLocator怎么用?Python dates.MonthLocator使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.dates
的用法示例。
在下文中一共展示了dates.MonthLocator方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_inline_query_performance_statistics
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import MonthLocator [as 别名]
def get_inline_query_performance_statistics(session):
"""Plot statistics regarding performance of inline query requests."""
creation_date = func.cast(InlineQueryRequest.created_at, Date).label(
"creation_date"
)
# Group the started users by date
strict_search_subquery = (
session.query(
creation_date, func.avg(InlineQueryRequest.duration).label("count")
)
.group_by(creation_date)
.order_by(creation_date)
.all()
)
strict_queries = [("strict", q[0], q[1]) for q in strict_search_subquery]
# Combine the results in a single dataframe and name the columns
request_statistics = strict_queries
dataframe = pandas.DataFrame(
request_statistics, columns=["type", "date", "duration"]
)
months = mdates.MonthLocator() # every month
months_fmt = mdates.DateFormatter("%Y-%m")
# Plot each result set
fig, ax = plt.subplots(figsize=(30, 15), dpi=120)
for key, group in dataframe.groupby(["type"]):
ax = group.plot(ax=ax, kind="bar", x="date", y="duration", label=key)
ax.xaxis.set_major_locator(months)
ax.xaxis.set_major_formatter(months_fmt)
image = image_from_figure(fig)
image.name = "request_duration_statistics.png"
return image
示例2: apply_date_formatting_to_axis
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import MonthLocator [as 别名]
def apply_date_formatting_to_axis(ax):
""" Format x-axis of input plot to a readable date format """
ax.xaxis.set_minor_locator(dates.WeekdayLocator(byweekday=(0), interval=1))
ax.xaxis.set_minor_formatter(dates.DateFormatter('%d\n%a'))
ax.xaxis.grid(True, which="minor")
ax.yaxis.grid()
ax.xaxis.set_major_locator(dates.MonthLocator())
ax.xaxis.set_major_formatter(dates.DateFormatter('\n\n\n%b\n%Y'))
return ax
示例3: plot_results
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import MonthLocator [as 别名]
def plot_results(features, dates, water, clouds, save_directory=None, ground_truth_file=None):
fig, ax = plt.subplots()
water_line = ax.plot(dates, water, linestyle='-', color='b', linewidth=1,
label='Landsat Surface Area')
ax.plot(dates, water, 'gs', ms=3)
# ax.bar(dates, water, color='b', width=15, linewidth=0)
# ax.bar(dates, clouds, bottom=water, color='r', width=15, linewidth=0)
ax.xaxis.set_major_locator(mdates.YearLocator(2))
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
ax.xaxis.set_minor_locator(mdates.MonthLocator([1, 4, 7, 10]))
ax.set_xlabel('Time')
ax.format_xdata = mdates.DateFormatter('%m/%d/%Y')
ax.set_xlim([datetime.date(1984, 1, 1), datetime.date(1984, 12, 31)])
ax.set_ylim([150, 190])
lns = water_line
if ground_truth_file is not None:
(ground_truth_dates, ground_truth_levels) = load_ground_truth(ground_truth_file)
ax2 = ax.twinx()
ground_truth_line = ax2.plot(ground_truth_dates, ground_truth_levels, linestyle='--', color='r', linewidth=2, label='Measured Elevation')
ax2.set_ylabel('Lake Elevation (ft)')
ax2.format_ydata = (lambda x: '%g ft' % (x))
ax2.set_ylim([6372.0, 6385.5])
lns = lns + ground_truth_line
ax2.set_xlim([datetime.date(1984, 6, 1), datetime.date(2015, 10, 1)])
ax.format_ydata = (lambda x: '%g km^2' % (x))
ax.set_ylabel('Lake Surface Area (km^2)')
fig.suptitle(features['name'] + ' Surface Area from Landsat')
labs = [l.get_label() for l in lns]
ax.legend(lns, labs, loc=4)
ax.grid(True)
fig.autofmt_xdate()
if save_directory is not None:
fig.savefig(os.path.join(save_directory, features['name'] + '.pdf'))
示例4: plot_results
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import MonthLocator [as 别名]
def plot_results(features, dates, water, clouds, save_directory=None, ground_truth_file=None):
fig, ax = plt.subplots()
water_line = ax.plot(dates, water, linestyle='-', color='b', linewidth=1,
label='Landsat-Generated Surface Area')
ax.plot(dates, water, 'gs', ms=3)
# ax.bar(dates, water, color='b', width=15, linewidth=0)
# ax.bar(dates, clouds, bottom=water, color='r', width=15, linewidth=0)
ax.xaxis.set_major_locator(mdates.YearLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
ax.xaxis.set_minor_locator(mdates.MonthLocator())
ax.set_xlabel('Time')
ax.format_xdata = mdates.DateFormatter('%m/%d/%Y')
if ground_truth_file is not None:
(ground_truth_dates, ground_truth_levels) = load_ground_truth(ground_truth_file)
ax2 = ax.twinx()
ground_truth_line = ax2.plot(ground_truth_dates, ground_truth_levels, linestyle='--', color='r', linewidth=2, label='Measured Elevation')
ax2.set_ylabel('Lake Elevation (ft)')
ax2.format_ydata = (lambda x: '%g ft' % (x))
ax2.set_ylim([6372, 6385.5])
def onpick(event):
thisline = event.artist
xdata = thisline.get_xdata()
ydata = thisline.get_ydata()
ind = event.ind
print 'onpick points:', zip(xdata[ind], ydata[ind])
fig.canvas.mpl_connect('pick_event', onpick)
ax.format_ydata = (lambda x: '%g km^2' % (x))
ax.set_ylabel('Lake Surface Area (km^2)')
fig.suptitle(features['name'] + ' Surface Area from Landsat')
lns = water_line# + ground_truth_line
labs = [l.get_label() for l in lns]
ax.legend(lns, labs, loc=4)
ax.grid(True)
fig.autofmt_xdate()
if save_directory is not None:
fig.savefig(os.path.join(save_directory, features['name'] + '.pdf'))
示例5: plotYearly
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import MonthLocator [as 别名]
def plotYearly(dictframe, ax, uncertainty, color='#0072B2'):
if ax is None:
figY = plt.figure(facecolor='w', figsize=(10, 6))
ax = figY.add_subplot(111)
else:
figY = ax.get_figure()
##
# Find the max index for an entry of each month
##
months = dictframe.ds.dt.month
ind = []
for month in range(1,13):
ind.append(max(months[months == month].index.tolist()))
##
# Plot from the minimum of those maximums on (this will almost certainly result in only 1 year plotted)
##
ax.plot(dictframe['ds'][min(ind):], dictframe['yearly'][min(ind):], ls='-', c=color)
if uncertainty:
ax.fill_between(dictframe['ds'].values[min(ind):], dictframe['yearly_lower'][min(ind):], dictframe['yearly_upper'][min(ind):], color=color, alpha=0.2)
ax.grid(True, which='major', c='gray', ls='-', lw=1, alpha=0.2)
months = MonthLocator(range(1, 13), bymonthday=1, interval=2)
ax.xaxis.set_major_formatter(FuncFormatter(
lambda x, pos=None: '{dt:%B} {dt.day}'.format(dt=num2date(x))))
ax.xaxis.set_major_locator(months)
ax.set_xlabel('Day of year')
ax.set_ylabel('yearly')
figY.tight_layout()
return figY
示例6: get_vote_activity
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import MonthLocator [as 别名]
def get_vote_activity(session):
"""Create a plot showing the inline usage statistics."""
creation_date = func.date_trunc("day", Vote.created_at).label("creation_date")
votes = (
session.query(creation_date, func.count(Vote.id).label("count"))
.group_by(creation_date)
.order_by(creation_date)
.all()
)
total_votes = [("Total votes", q[0], q[1]) for q in votes]
# Grid style
plt.style.use("seaborn-whitegrid")
# Combine the results in a single dataframe and name the columns
dataframe = pandas.DataFrame(total_votes, columns=["type", "date", "votes"])
months = mdates.MonthLocator() # every month
months_fmt = mdates.DateFormatter("%Y-%m")
max_number = max([vote[2] for vote in total_votes])
# Plot each result set
fig, ax = plt.subplots(figsize=(30, 15), dpi=120)
for key, group in dataframe.groupby(["type"]):
ax = group.plot(ax=ax, kind="bar", x="date", y="votes", label=key)
ax.xaxis.set_major_locator(months)
ax.xaxis.set_major_formatter(months_fmt)
ax.yaxis.set_ticks(np.arange(0, max_number, 100))
image = image_from_figure(fig)
image.name = "vote_statistics.png"
return image
示例7: PlotScalerDateAdjust
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import MonthLocator [as 别名]
def PlotScalerDateAdjust(minDate:datetime, maxDate:datetime, ax):
if type(minDate)==str:
daysInGraph = DateDiffDays(minDate,maxDate)
else:
daysInGraph = (maxDate-minDate).days
if daysInGraph >= 365*3:
majorlocator = mdates.YearLocator()
minorLocator = mdates.MonthLocator()
majorFormatter = mdates.DateFormatter('%m/%d/%Y')
elif daysInGraph >= 365:
majorlocator = mdates.MonthLocator()
minorLocator = mdates.WeekdayLocator()
majorFormatter = mdates.DateFormatter('%m/%d/%Y')
elif daysInGraph < 90:
majorlocator = mdates.DayLocator()
minorLocator = mdates.DayLocator()
majorFormatter = mdates.DateFormatter('%m/%d/%Y')
else:
majorlocator = mdates.WeekdayLocator()
minorLocator = mdates.DayLocator()
majorFormatter = mdates.DateFormatter('%m/%d/%Y')
ax.xaxis.set_major_locator(majorlocator)
ax.xaxis.set_major_formatter(majorFormatter)
ax.xaxis.set_minor_locator(minorLocator)
#ax.xaxis.set_minor_formatter(daysFmt)
ax.set_xlim(minDate, maxDate)
示例8: main
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import MonthLocator [as 别名]
def main(args):
_, fetch = load_dataset(SP500, shuffle=False)
dates, returns = fetch()
init_rng_key, sample_rng_key = random.split(random.PRNGKey(args.rng_seed))
model_info = initialize_model(init_rng_key, model, model_args=(returns,))
init_kernel, sample_kernel = hmc(model_info.potential_fn, algo='NUTS')
hmc_state = init_kernel(model_info.param_info, args.num_warmup, rng_key=sample_rng_key)
hmc_states = fori_collect(args.num_warmup, args.num_warmup + args.num_samples, sample_kernel, hmc_state,
transform=lambda hmc_state: model_info.postprocess_fn(hmc_state.z),
progbar=False if "NUMPYRO_SPHINXBUILD" in os.environ else True)
print_results(hmc_states, dates)
fig, ax = plt.subplots(1, 1)
dates = mdates.num2date(mdates.datestr2num(dates))
ax.plot(dates, returns, lw=0.5)
# format the ticks
ax.xaxis.set_major_locator(mdates.YearLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
ax.xaxis.set_minor_locator(mdates.MonthLocator())
ax.plot(dates, jnp.exp(hmc_states['s'].T), 'r', alpha=0.01)
legend = ax.legend(['returns', 'volatility'], loc='upper right')
legend.legendHandles[1].set_alpha(0.6)
ax.set(xlabel='time', ylabel='returns', title='Volatility of S&P500 over time')
plt.savefig("stochastic_volatility_plot.pdf")
plt.tight_layout()
示例9: getDatasForOneRouteForOneDepartureDate
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import MonthLocator [as 别名]
def getDatasForOneRouteForOneDepartureDate(route, departureDate):
X = getOneRouteData(datas, route)
minDeparture = np.amin(X[:,8])
maxDeparture = np.amax(X[:,8])
print minDeparture
print maxDeparture
# get specific departure date datas
X = X[np.where(X[:, 8]==departureDate)[0], :]
# get the x values
xaxis = X[:,9] # observed date state
print xaxis
xaxis = departureDate-1-xaxis
print xaxis
tmp = xaxis
startdate = "20151109"
xaxis = [pd.to_datetime(startdate) + pd.DateOffset(days=state) for state in tmp]
print xaxis
# get the y values
yaxis = X[:,12]
# every monday
mondays = WeekdayLocator(MONDAY)
# every 3rd month
months = MonthLocator(range(1, 13), bymonthday=1, interval=01)
days = WeekdayLocator(byweekday=1, interval=2)
monthsFmt = DateFormatter("%b. %d, %Y")
fig, ax = plt.subplots()
ax.plot_date(xaxis, yaxis, 'r--')
ax.plot_date(xaxis, yaxis, 'bo')
ax.xaxis.set_major_locator(days)
ax.xaxis.set_major_formatter(monthsFmt)
#ax.xaxis.set_minor_locator(mondays)
ax.autoscale_view()
#ax.xaxis.grid(False, 'major')
#ax.xaxis.grid(True, 'minor')
ax.grid(True)
plt.xlabel('Date')
plt.ylabel('Price in Euro')
fig.autofmt_xdate()
plt.show()
"""
# plot
line1, = plt.plot(xaxis, yaxis, 'r--')
line2, = plt.plot(xaxis, yaxis, 'bo')
#plt.legend([line2], ["Price"])
plt.xlabel('States')
plt.ylabel('Price in Euro')
plt.show()
"""
示例10: set_x_axis_locator
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import MonthLocator [as 别名]
def set_x_axis_locator(self, x_from, x_to):
x_axis_range = x_to - x_from
years = mdates.YearLocator()
if x_axis_range < 200:
self.ax.xaxis.set_major_locator(mdates.MonthLocator())
self.ax.xaxis.set_major_formatter(mdates.DateFormatter('%b-%Y'))
# self.ax.xaxis.set_major_locator(mdates.AutoDateLocator())
elif x_axis_range < 7*365:
self.ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
self.ax.xaxis.set_major_locator(years)
self.ax.xaxis.set_minor_locator(mdates.MonthLocator())
else:
self.ax.xaxis.set_major_locator(years)
self.ax.xaxis.set_major_locator(mdates.AutoDateLocator())
示例11: set_x_axis_locator
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import MonthLocator [as 别名]
def set_x_axis_locator(ax, x_from, x_to):
x_axis_range = x_to - x_from
if x_axis_range < 300:
ax.xaxis.set_major_locator(mdates.MonthLocator())
ax.xaxis.set_major_formatter(mdates.DateFormatter('%b-%Y'))
elif x_axis_range < 4*365:
ax.xaxis.set_major_locator(years)
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y'))
else:
ax.xaxis.set_major_locator(mdates.AutoDateLocator())
return ax
示例12: back_test_plot
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import MonthLocator [as 别名]
def back_test_plot(self):
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
fig = plt.figure()
all_lines = []
ax = fig.add_subplot(111)
ax.set_ylabel('PnL')
has_right_ax = False
if 'quant_index' in self.used_vars or \
'quant_index1' in self.used_vars or \
'quant_index2' in self.used_vars or \
'quant_index3' in self.used_vars:
has_right_ax = True
dates = [ x[0] for x in self.pnls['portfolio'] ]
for v in self.used_vars:
if 'portfolio' in v:
all_lines += ax.plot(dates, [x[1] for x in self.pnls[v]],label=v,linewidth=1)
if has_right_ax:
right_ax = ax.twinx()
for v in self.used_vars:
if 'index' in v:
all_lines += right_ax.plot(dates, self.quant_indices[v],label=v,linewidth=1,ls='dotted')
right_ax.set_ylabel('quant_index')
# format the ticks
years = mdates.YearLocator() # every year
months = mdates.MonthLocator() # every month
yearsFmt = mdates.DateFormatter('%Y')
ax.xaxis.set_major_locator(years)
ax.xaxis.set_major_formatter(yearsFmt)
ax.xaxis.set_minor_locator(months)
datemin = min(dates)
datemax = max(dates)
ax.set_xlim(datemin, datemax)
ax.format_xdata = mdates.DateFormatter('%Y-%m-%d')
ax.grid(True)
# rotates and right aligns the x labels, and moves the bottom of the
# axes up to make room for them
fig.autofmt_xdate()
fig.tight_layout()
plt.legend(all_lines,[l.get_label() for l in all_lines],loc='best')
plt.show()
示例13: activity
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import MonthLocator [as 别名]
def activity(members):
"""Visualize member activity over whole chat period.
Display weekly means for every user in a spaghetti plot emphasizing
one user at a time.
"""
# compute weekly means
fig, axarr = plt.subplots(len(members), sharex=True, sharey=True, squeeze=False)
axarr = [ax for lt in axarr for ax in lt]
index = (7 - Member.first.weekday()) % 7
weeks = [
[mean(members[i].days[k:k+7]) for k in range(index, Member.period-6, 7)]
for i in range(len(members))
]
dates = [Member.first.date() + dt.timedelta(days=i) for i in range(index, Member.period-6, 7)]
# plot multiple times with different emphasis
for i, member in enumerate(members):
for j in range(len(members)):
axarr[i].plot(dates, weeks[j], color=COLORS[3], linewidth=0.5)
axarr[i].plot(dates, weeks[i], color=COLORS[i+4])
# set style attributes
axarr[i].yaxis.grid(True)
if weeks[0]: axarr[i].set_ylim(0, 1.1*max([max(l) for l in weeks]))
axarr[i].set_ylabel(member.name, labelpad=20, rotation=0, ha='right')
plt.xlim(
Member.first.date() - dt.timedelta(days=1),
Member.first.date() + dt.timedelta(Member.period)
)
# set formatter and locator (autolocator has problems setting good date xticks)
axarr[i].xaxis.set_major_formatter(mdates.DateFormatter('%b %Y'))
axarr[i].xaxis.set_major_locator(mdates.MonthLocator(interval=(Member.period // 250) or 1))
axarr[i].callbacks.connect(
'xlim_changed',
lambda ax: ax.xaxis.set_major_locator(
mdates.MonthLocator(interval=(int(ax.get_xlim()[1] - ax.get_xlim()[0]) // 250) or 1)
)
)
# set title
fig.add_subplot(111, frameon=False)
plt.tick_params(labelcolor='none', left=False, bottom=False)
plt.title('User Activity (Messages / Day Weekly Means)')
示例14: tsindex
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import MonthLocator [as 别名]
def tsindex(ax):
"""
Reset the axis parameters to look nice!
"""
# Get dt in days
dt = ax.get_xlim()[-1] - ax.get_xlim()[0]
if dt <= 1./24.: # less than one hour
pass
elif dt <= 1.: # less than one day
ax.xaxis.set_minor_locator( dates.HourLocator() )
ax.xaxis.set_minor_formatter( dates.DateFormatter(""))
ax.xaxis.set_major_locator( dates.HourLocator( interval=3))
ax.xaxis.set_major_formatter( dates.DateFormatter("%-I %p"))
elif dt <= 7.: # less than one week
ax.xaxis.set_minor_locator( dates.DayLocator())
ax.xaxis.set_minor_formatter( dates.DateFormatter("%d"))
ax.xaxis.set_major_locator( dates.DayLocator( bymonthday=[1, 8, 15, 22]) )
ax.xaxis.set_major_formatter( dates.DateFormatter("\n%b\n%Y") )
elif dt <= 14.: # less than two weeks
ax.xaxis.set_minor_locator( dates.DayLocator())
ax.xaxis.set_minor_formatter( dates.DateFormatter("%d"))
ax.xaxis.set_major_locator( dates.DayLocator( bymonthday=[1, 15]) )
ax.xaxis.set_major_formatter( dates.DateFormatter("\n%b\n%Y") )
elif dt <= 28.: # less than four weeks
ax.xaxis.set_minor_locator( dates.DayLocator())
ax.xaxis.set_minor_formatter( dates.DateFormatter("%d"))
ax.xaxis.set_major_locator( dates.MonthLocator() )
ax.xaxis.set_major_formatter( dates.DateFormatter("\n%b\n%Y") )
elif dt <= 4 * 30.: # less than four months
ax.xaxis.set_minor_locator( dates.DayLocator( bymonthday=[1, 7, 14, 21] ))
ax.xaxis.set_minor_formatter( dates.DateFormatter("%d"))
ax.xaxis.set_major_locator( dates.MonthLocator())
ax.xaxis.set_major_formatter( dates.DateFormatter("\n%b\n%Y") )
else:
ax.xaxis.set_minor_locator( dates.MonthLocator(interval=2) )
ax.xaxis.set_minor_formatter( dates.DateFormatter("%b"))
ax.xaxis.set_major_locator( dates.MonthLocator(bymonth=[1]) )
ax.xaxis.set_major_formatter( dates.DateFormatter("\n%Y"))
return ax
示例15: createLinePlot
# 需要导入模块: from matplotlib import dates [as 别名]
# 或者: from matplotlib.dates import MonthLocator [as 别名]
def createLinePlot(self):
nseries = len(self.meta())
res = self.results()
meta = self.meta()
timeSeries = [datetime.fromtimestamp(m[0]["time"] / 1000) for m in res]
means = [[np.nan] * len(res) for n in range(0, nseries)]
plotSeries = self.computeOptions().get_plot_series() if self.computeOptions is not None else None
if plotSeries is None:
plotSeries = "mean"
for n in range(0, len(res)):
timeSlot = res[n]
for seriesValues in timeSlot:
means[seriesValues['ds']][n] = seriesValues[plotSeries]
x = timeSeries
fig, axMain = plt.subplots()
fig.set_size_inches(11.0, 8.5)
fig.autofmt_xdate()
title = ', '.join(set([m['title'] for m in meta]))
sources = ', '.join(set([m['source'] for m in meta]))
dateRange = "%s - %s" % (timeSeries[0].strftime('%b %Y'), timeSeries[-1].strftime('%b %Y'))
axMain.set_title("%s\n%s\n%s" % (title, sources, dateRange))
axMain.set_xlabel('Date')
axMain.grid(True)
axMain.xaxis.set_major_locator(mdates.YearLocator())
axMain.xaxis.set_major_formatter(mdates.DateFormatter('%b %Y'))
axMain.xaxis.set_minor_locator(mdates.MonthLocator())
axMain.format_xdata = mdates.DateFormatter('%Y-%m-%d')
plots = []
for n in range(0, nseries):
if n == 0:
ax = axMain
else:
ax = ax.twinx()
plots += ax.plot(x, means[n], color=self.__SERIES_COLORS[n], zorder=10, linewidth=3,
label=meta[n]['title'])
ax.set_ylabel(meta[n]['units'])
labs = [l.get_label() for l in plots]
axMain.legend(plots, labs, loc=0)
sio = StringIO()
plt.savefig(sio, format='png')
return sio.getvalue()