本文整理汇总了Python中matplotlib.colors.colorConverter.to_rgba方法的典型用法代码示例。如果您正苦于以下问题:Python colorConverter.to_rgba方法的具体用法?Python colorConverter.to_rgba怎么用?Python colorConverter.to_rgba使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.colors.colorConverter
的用法示例。
在下文中一共展示了colorConverter.to_rgba方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: export_color
# 需要导入模块: from matplotlib.colors import colorConverter [as 别名]
# 或者: from matplotlib.colors.colorConverter import to_rgba [as 别名]
def export_color(color):
"""Convert matplotlib color code to hex color or RGBA color"""
if color is None or colorConverter.to_rgba(color)[3] == 0:
return 'none'
elif colorConverter.to_rgba(color)[3] == 1:
rgb = colorConverter.to_rgb(color)
return '#{0:02X}{1:02X}{2:02X}'.format(*(int(255 * c) for c in rgb))
else:
c = colorConverter.to_rgba(color)
return "rgba(" + ", ".join(str(int(np.round(val * 255)))
for val in c[:3])+', '+str(c[3])+")"
示例2: __init__
# 需要导入模块: from matplotlib.colors import colorConverter [as 别名]
# 或者: from matplotlib.colors.colorConverter import to_rgba [as 别名]
def __init__(self, offset=(2,-2),
shadow_color='k', alpha=0.3, rho=0.3, **kwargs):
"""
Parameters
----------
offset : pair of floats
The offset to apply to the path, in points.
shadow_color : color
The shadow color. Default is black.
A value of ``None`` takes the original artist's color
with a scale factor of `rho`.
alpha : float
The alpha transparency of the created shadow patch.
Default is 0.3.
rho : float
A scale factor to apply to the rgbFace color if `shadow_rgbFace`
is ``None``. Default is 0.3.
**kwargs
Extra keywords are stored and passed through to
:meth:`AbstractPathEffect._update_gc`.
"""
super(SimpleLineShadow, self).__init__(offset)
if shadow_color is None:
self._shadow_color = shadow_color
else:
self._shadow_color = colorConverter.to_rgba(shadow_color)
self._alpha = alpha
self._rho = rho
#: The dictionary of keywords to update the graphics collection with.
self._gc = kwargs
#: The offset transform object. The offset isn't calculated yet
#: as we don't know how big the figure will be in pixels.
self._offset_tran = mtransforms.Affine2D()
示例3: plot_weights
# 需要导入模块: from matplotlib.colors import colorConverter [as 别名]
# 或者: from matplotlib.colors.colorConverter import to_rgba [as 别名]
def plot_weights(weights_list, title="Neurons weights progress", y_lim = None):
# Plot
# Make a list of colors cycling through the rgbcmyk series.
colors = [colorConverter.to_rgba(c) for c in ('k', 'r', 'g', 'b', 'c', 'y', 'm')]
axes = pl.axes()
ax4 = axes # unpack the axes
ncurves = 1
offs = (0.0, 0.0)
segs = []
for i in range(ncurves):
curve = weights_list
segs.append(curve)
col = collections.LineCollection(segs, offsets=offs)
ax4.add_collection(col, autolim=True)
col.set_color(colors)
ax4.autoscale_view()
ax4.set_title(title)
ax4.set_xlabel('Time ms')
ax4.set_ylabel('Weight pA')
y_lim = 105.
if y_lim :
ax4.set_ylim(-5, y_lim)
pl.savefig(f_name_gen('dopa-weights', is_image=True), format='png')
# pl.show()
# =======
# DEVICES
# =======
示例4: plot_weights
# 需要导入模块: from matplotlib.colors import colorConverter [as 别名]
# 或者: from matplotlib.colors.colorConverter import to_rgba [as 别名]
def plot_weights(weights_list, title="Neurons weights progress"):
# Make a list of colors cycling through the rgbcmyk series.
colors = [colorConverter.to_rgba(c) for c in ('k', 'r', 'g', 'b', 'c', 'y', 'm')]
axes = pl.axes()
ax4 = axes # unpack the axes
ncurves = 1
offs = (0.0, 0.0)
segs = []
for i in range(ncurves):
curve = weights_list
segs.append(curve)
col = collections.LineCollection(segs, offsets=offs)
ax4.add_collection(col, autolim=True)
col.set_color(colors)
ax4.autoscale_view()
ax4.set_title(title)
ax4.set_xlabel('Time ms')
ax4.set_ylabel('Weight pA')
y_lim = 105.
if y_lim:
ax4.set_ylim(-5, y_lim)
pl.savefig(f_name_gen('dopa-weights', is_image=True), format='png')
# pl.show()
# =======
# DEVICES
# =======
示例5: color_to_hex
# 需要导入模块: from matplotlib.colors import colorConverter [as 别名]
# 或者: from matplotlib.colors.colorConverter import to_rgba [as 别名]
def color_to_hex(color):
"""Convert matplotlib color code to hex color code"""
if color is None or colorConverter.to_rgba(color)[3] == 0:
return 'none'
else:
rgb = colorConverter.to_rgb(color)
return '#{0:02X}{1:02X}{2:02X}'.format(*(int(255 * c) for c in rgb))
示例6: index_bar
# 需要导入模块: from matplotlib.colors import colorConverter [as 别名]
# 或者: from matplotlib.colors.colorConverter import to_rgba [as 别名]
def index_bar(ax, vals,
facecolor='b', edgecolor='l',
width=4, alpha=1.0, ):
"""
Add a bar collection graph with height vals (-1 is missing).
ax : an Axes instance to plot to
width : the bar width in points
alpha : bar transparency
"""
facecolors = (colorConverter.to_rgba(facecolor, alpha),)
edgecolors = (colorConverter.to_rgba(edgecolor, alpha),)
right = width/2.0
left = -width/2.0
bars = [ ( (left, 0), (left, v), (right, v), (right, 0)) for v in vals if v != -1 ]
sx = ax.figure.dpi * (1.0/72.0) # scale for points
sy = ax.bbox.height / ax.viewLim.height
barTransform = Affine2D().scale(sx,sy)
offsetsBars = [ (i, 0) for i,v in enumerate(vals) if v != -1 ]
barCollection = PolyCollection(bars,
facecolors = facecolors,
edgecolors = edgecolors,
antialiaseds = (0,),
linewidths = (0.5,),
offsets = offsetsBars,
transOffset = ax.transData,
)
barCollection.set_transform(barTransform)
minpy, maxx = (0, len(offsetsBars))
miny = 0
maxy = max([v for v in vals if v!=-1])
corners = (minpy, miny), (maxx, maxy)
ax.update_datalim(corners)
ax.autoscale_view()
# add these last
ax.add_collection(barCollection)
return barCollection