本文整理汇总了Python中matplotlib.collections方法的典型用法代码示例。如果您正苦于以下问题:Python matplotlib.collections方法的具体用法?Python matplotlib.collections怎么用?Python matplotlib.collections使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib
的用法示例。
在下文中一共展示了matplotlib.collections方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _set_ylim
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import collections [as 别名]
def _set_ylim(self, pad=0.075):
def minmax(x):
return np.ma.min(x), np.ma.max(x)
ax = self.ax
ymin,ymax = +1e10, -1e10
for line in ax.lines:
y0,y1 = minmax( line.get_data()[1] )
ymin = min(y0, ymin)
ymax = max(y1, ymax)
for collection in ax.collections:
datalim = collection.get_datalim(ax.transData)
y0,y1 = minmax( np.asarray(datalim)[:,1] )
ymin = min(y0, ymin)
ymax = max(y1, ymax)
for text in ax.texts:
r = matplotlib.backend_bases.RendererBase()
bbox = text.get_window_extent(r)
y0,y1 = ax.transData.inverted().transform(bbox)[:,1]
ymin = min(y0, ymin)
ymax = max(y1, ymax)
dy = 0.075*(ymax-ymin)
ax.set_ylim(ymin-dy, ymax+dy)
示例2: on_key
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import collections [as 别名]
def on_key(self, event):
import matplotlib.collections
if event.inaxes != self.line.axes: return
if event.key == 'tab':
# we go to the next plot...
if not self.plot_list: return
self.plot_list[self.current_plot].set_visible(False)
tmp = self.current_plot
self.current_plot = (self.current_plot + 1) % len(self.plot_list)
a = self.plot_list[self.current_plot]
if isinstance(a, matplotlib.collections.TriMesh): a.set_visible(True)
else: self.plot_list[self.current_plot] = a(self.axes)
a.figure.canvas.draw()
示例3: DrawContourAndMark
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import collections [as 别名]
def DrawContourAndMark(contour, x, y, z, level, clipborder, patch, m):
# 是否绘制等值线 ------ 等值线和标注是一体的
if contour.contour['visible']:
matplotlib.rcParams['contour.negative_linestyle'] = 'dashed'
if contour.contour['colorline']:
CS1 = m.contour(x, y, z, levels=level, linewidths=contour.contour['linewidth'])
else:
CS1 = m.contour(x,
y,
z,
levels=level,
linewidths=contour.contour['linewidth'],
colors=contour.contour['linecolor'])
# 是否绘制等值线标注
CS2 = None
if contour.contourlabel['visible']:
CS2 = plt.clabel(CS1,
inline=1,
fmt=contour.contourlabel['fmt'],
inline_spacing=contour.contourlabel['inlinespacing'],
fontsize=contour.contourlabel['fontsize'],
colors=contour.contourlabel['fontcolor'])
# 用区域边界裁切等值线图
if clipborder.path is not None and clipborder.using:
for collection in CS1.collections:
# collection.set_clip_on(True)
collection.set_clip_path(patch)
if CS2 is not None:
for text in CS2:
if not clipborder.path.contains_point(text.get_position()):
text.remove()
示例4: _contour
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import collections [as 别名]
def _contour(self, method_name, *XYCL, **kwargs):
if len(XYCL) <= 2:
C = XYCL[0]
ny, nx = C.shape
gx = np.arange(0., nx, 1.)
gy = np.arange(0., ny, 1.)
X,Y = np.meshgrid(gx, gy)
CL = XYCL
else:
X, Y = XYCL[:2]
CL = XYCL[2:]
contour_routine = self._get_base_axes_attr(method_name)
if kwargs.has_key("transform"):
cont = contour_routine(self, X, Y, *CL, **kwargs)
else:
orig_shape = X.shape
xy = np.vstack([X.flat, Y.flat])
xyt=xy.transpose()
wxy = self.transAux.transform(xyt)
gx, gy = wxy[:,0].reshape(orig_shape), wxy[:,1].reshape(orig_shape)
cont = contour_routine(self, gx, gy, *CL, **kwargs)
for c in cont.collections:
c.set_transform(self._parent_axes.transData)
return cont
示例5: _get_handles
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import collections [as 别名]
def _get_handles(ax):
handles = ax.lines[:]
handles.extend(ax.patches)
handles.extend([c for c in ax.collections
if isinstance(c, mcoll.LineCollection)])
handles.extend([c for c in ax.collections
if isinstance(c, mcoll.RegularPolyCollection)])
handles.extend([c for c in ax.collections
if isinstance(c, mcoll.CircleCollection)])
return handles
示例6: plot_selected_energy_range
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import collections [as 别名]
def plot_selected_energy_range(self, *, e_low=None, e_high=None):
"""
Plot the range of energies selected for processing. The range may be optionally
provided as arguments. The range values that are not provided, are read from
globally accessible dictionary of parameters. The values passed as arguments
are mainly used if the function is called during interactive update of the
range, when the order of update is undetermined and the parameter dictionary
may be updated after the function is called.
"""
# The range of energy selected for analysis
if e_low is None:
e_low = self.param_model.param_new['non_fitting_values']['energy_bound_low']['value']
if e_high is None:
e_high = self.param_model.param_new['non_fitting_values']['energy_bound_high']['value']
n_x = 4096 # Set to the maximum possible number of points
# Generate the values for 'energy' axis
x_v = (self.parameters['e_offset']['value'] +
np.arange(n_x) *
self.parameters['e_linear']['value'] +
np.arange(n_x) ** 2 *
self.parameters['e_quadratic']['value'])
ss = (x_v < e_high) & (x_v > e_low)
y_min, y_max = 1e-30, 1e30 # Select the max and min values for plotted rectangles
# Remove the plot if it exists
if self.plot_energy_barh in self._ax.collections:
self._ax.collections.remove(self.plot_energy_barh)
# Create the new plot (based on new parameters if necessary
self.plot_energy_barh = BrokenBarHCollection.span_where(
x_v, ymin=y_min, ymax=y_max, where=ss, facecolor='white', edgecolor='yellow', alpha=1)
self._ax.add_collection(self.plot_energy_barh)
示例7: vertex
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import collections [as 别名]
def vertex(self, vertices, color=None, vmin=None, vmax=None, **kwargs):
"""Plot polygons (e.g. Healpix vertices)
Args:
vertices: cell boundaries in RA/Dec, from getCountAtLocations()
color: string or matplib color, or numeric array to set polygon colors
vmin: if color is numeric array, use vmin to set color of minimum
vmax: if color is numeric array, use vmin to set color of minimum
**kwargs: matplotlib.collections.PolyCollection keywords
Returns:
matplotlib.collections.PolyCollection
"""
vertices_ = np.empty_like(vertices)
vertices_[:,:,0], vertices_[:,:,1] = self.proj.transform(vertices[:,:,0], vertices[:,:,1])
# remove vertices which are split at the outer meridians
# find variance of vertice nodes large compared to dispersion of centers
centers = np.mean(vertices, axis=1)
x, y = self.proj.transform(centers[:,0], centers[:,1])
var = np.sum(np.var(vertices_, axis=1), axis=-1) / (x.var() + y.var())
sel = var < 0.05
vertices_ = vertices_[sel]
from matplotlib.collections import PolyCollection
zorder = kwargs.pop("zorder", 0) # same as for imshow: underneath everything
rasterized = kwargs.pop('rasterized', True)
alpha = kwargs.pop('alpha', 1)
if alpha < 1:
lw = kwargs.pop('lw', 0)
else:
lw = kwargs.pop('lw', None)
coll = PolyCollection(vertices_, zorder=zorder, rasterized=rasterized, alpha=alpha, lw=lw, **kwargs)
if color is not None:
coll.set_array(color[sel])
coll.set_clim(vmin=vmin, vmax=vmax)
coll.set_edgecolor("face")
self.ax.add_collection(coll)
self.ax.set_rasterization_zorder(zorder)
return coll
示例8: footprint
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import collections [as 别名]
def footprint(self, survey, nside, **kwargs):
"""Plot survey footprint onto map
Uses `contains()` method of a `skymapper.Survey` derived class instance
Args:
survey: name of the survey, must be in keys of `skymapper.survey_register`
nside: HealPix nside
**kwargs: styling of `matplotlib.collections.PolyCollection`
"""
pixels, rap, decp, vertices = healpix.getGrid(nside, return_vertices=True)
inside = survey.contains(rap, decp)
return self.vertex(vertices[inside], **kwargs)
示例9: _update_axis_2d
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import collections [as 别名]
def _update_axis_2d(axis, info, data):
if 'lines' in data:
for p, dat in enumerate(data['lines']):
axis.lines[p].set_data(dat[0, :].ravel(), dat[1, :].ravel())
if 'surfaces' in data:
for p, dat in enumerate(data['surfaces']):
axis.collections[p].set_verts([dat.T.tolist()])
axis.relim()
scalex = ('xlim' not in info or info['xlim'] is None)
scaley = ('ylim' not in info or info['ylim'] is None)
axis.autoscale_view(True, scalex, scaley)
示例10: _update_axis_3d
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import collections [as 别名]
def _update_axis_3d(axis, info, data):
if 'lines' in data:
for p, dat in enumerate(data['lines']):
axis.lines[p].set_data(dat[0, :].ravel(), dat[1, :].ravel())
axis.lines[p].set_3d_properties(dat[2, :].ravel())
if 'surfaces' in data:
for p, dat in enumerate(data['surfaces']):
axis.collections[p].set_verts([dat.T.tolist()])
axis.relim()
scalex = ('xlim' not in info or info['xlim'] is None)
scaley = ('ylim' not in info or info['ylim'] is None)
scalez = ('zlim' not in info or info['zlim'] is None)
axis.autoscale_view(True, scalex, scaley, scalez)
if 'aspect_equal' in info and info['aspect_equal']:
# hack due to bug in matplotlib3d
limits = []
if 'xlim' in info:
limits.append(info['xlim'])
else:
limits.append(axis.get_xlim3d())
if 'ylim' in info:
limits.append(info['ylim'])
else:
limits.append(axis.get_ylim3d())
if 'zlim' in info:
limits.append(info['zlim'])
else:
limits.append(axis.get_zlim3d())
ranges = [abs(lim[1] - lim[0]) for lim in limits]
centra = [np.mean(lim) for lim in limits]
radius = 0.5*max(ranges)
axis.set_xlim3d([centra[0] - radius, centra[0] + radius])
axis.set_ylim3d([centra[1] - radius, centra[1] + radius])
axis.set_zlim3d([centra[2] - radius, centra[2] + radius])
示例11: _embedding_delay_plot
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import collections [as 别名]
def _embedding_delay_plot(
signal, metric_values, tau_sequence, tau=1, metric="Mutual Information", ax0=None, ax1=None, plot="2D"
):
# Prepare figure
if ax0 is None and ax1 is None:
fig = plt.figure(constrained_layout=False)
spec = matplotlib.gridspec.GridSpec(ncols=1, nrows=2, height_ratios=[1, 3], width_ratios=[2])
ax0 = fig.add_subplot(spec[0])
if plot == "2D":
ax1 = fig.add_subplot(spec[1])
elif plot == "3D":
ax1 = fig.add_subplot(spec[1], projection="3d")
else:
fig = None
ax0.set_title("Optimization of Delay (tau)")
ax0.set_xlabel("Time Delay (tau)")
ax0.set_ylabel(metric)
ax0.plot(tau_sequence, metric_values, color="#FFC107")
ax0.axvline(x=tau, color="#E91E63", label="Optimal delay: " + str(tau))
ax0.legend(loc="upper right")
ax1.set_title("Attractor")
ax1.set_xlabel("Signal [i]")
ax1.set_ylabel("Signal [i-" + str(tau) + "]")
# Get data points, set axis limits
embedded = complexity_embedding(signal, delay=tau, dimension=3)
x = embedded[:, 0]
y = embedded[:, 1]
z = embedded[:, 2]
ax1.set_xlim(x.min(), x.max())
ax1.set_ylim(x.min(), x.max())
# Colors
norm = plt.Normalize(z.min(), z.max())
cmap = plt.get_cmap("plasma")
colors = cmap(norm(x))
# Attractor for 2D vs 3D
if plot == "2D":
points = np.array([x, y]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
lc = matplotlib.collections.LineCollection(segments, cmap="plasma", norm=norm)
lc.set_array(z)
ax1.add_collection(lc)
elif plot == "3D":
points = np.array([x, y, z]).T.reshape(-1, 1, 3)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
for i in range(len(x) - 1):
seg = segments[i]
(l,) = ax1.plot(seg[:, 0], seg[:, 1], seg[:, 2], color=colors[i])
l.set_solid_capstyle("round")
ax1.set_zlabel("Signal [i-" + str(2 * tau) + "]")
return fig
示例12: update_coverage_regions
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import collections [as 别名]
def update_coverage_regions(self):
point_mobiles = []
for ix,code_mobile in enumerate(self.sim.mobile_fog_entities.keys()):
if code_mobile in self.track_code_last_position.keys():
(lng, lat) = self.track_code_last_position[code_mobile]
point_mobiles.append(np.array([lng, lat]))
point_mobiles = np.array(point_mobiles)
if len(point_mobiles)==0:
self.pointsVOR = self.sim.endpoints
else:
self.pointsVOR = np.concatenate((self.sim.endpoints, point_mobiles), axis=0)
self.sim.coverage.update_coverage_of_endpoints(self.sim.map, self.pointsVOR)
self.axarr.clear()
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.xlim(0, self.sim.map.w)
plt.ylim(self.sim.map.h, 0)
plt.axis('off')
plt.tight_layout()
self.axarr.imshow(self.sim.map.img)
# self.axarr.add_collection(
# mpl.collections.PolyCollection(
# self.sim.coverage.cells, facecolors=self.sim.coverage.colors_cells,
# edgecolors='k', alpha=.25))
# p = PatchCollection(self.sim.coverage.get_polygon_to_map(),facecolors=self.sim.coverage.get_polygon_colors(),alpha=.25)
# p.set_array(self.sim.coverage.colors_cells)
self.axarr.add_collection(self.sim.coverage.get_polygons_on_map())
# self.ppix = [self.sim.map.to_pixels(vp[0], vp[1]) for vp in self.pointsVOR]
# self.ppix = np.array(self.ppix)
# for point in self.ppix:
# ab = AnnotationBbox(self.car_icon, (point[0], point[1]),frameon=False)
# self.axarr.add_artist(ab)
# Endpoints of the network
self.ppix = [self.sim.map.to_pixels(vp[0], vp[1]) for vp in self.sim.endpoints]
for point in self.ppix:
ab = AnnotationBbox(self.endpoint_icon, (point[0], point[1]), frameon=False)
self.axarr.add_artist(ab)
# self.axarr.scatter(self.ppix[:, 0], self.ppix[:, 1])
示例13: parametricPlot
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import collections [as 别名]
def parametricPlot(self, cmap='hot_r', vmin=None, vmax=None, mask=None,
ticks=None):
from matplotlib.collections import LineCollection
import matplotlib
fig = plt.figure()
gca = fig.gca()
bsize, ksize = self.bands.shape
# print self.bands
if mask is not None:
mbands = np.ma.masked_array(self.bands, np.abs(self.spd) < mask)
else:
# Faking a mask, all elemtnet are included
mbands = np.ma.masked_array(self.bands, False)
# print mbands
if vmin is None:
vmin = self.spd.min()
if vmax is None:
vmax = self.spd.max()
print("normalizing to: ", (vmin, vmax))
norm = matplotlib.colors.Normalize(vmin, vmax)
if self.kpoints is not None:
xaxis = [0]
for i in range(1, len(self.kpoints)):
d = self.kpoints[i - 1] - self.kpoints[i]
d = np.sqrt(np.dot(d, d))
xaxis.append(d + xaxis[-1])
xaxis = np.array(xaxis)
else:
xaxis = np.arange(ksize)
for y, z in zip(mbands, self.spd):
# print xaxis.shape, y.shape, z.shape
points = np.array([xaxis, y]).T.reshape(-1, 1, 2)
segments = np.concatenate([points[:-1], points[1:]], axis=1)
lc = LineCollection(segments, cmap=plt.get_cmap(cmap), norm=norm,
alpha=0.8)
lc.set_array(z)
lc.set_linewidth(2)
gca.add_collection(lc)
plt.colorbar(lc)
plt.xlim(xaxis.min(), xaxis.max())
plt.ylim(mbands.min(), mbands.max())
# handling ticks
if ticks:
ticks, ticksNames = zip(*ticks)
ticks = [xaxis[x] for x in ticks]
plt.xticks(ticks, ticksNames)
return fig