本文整理汇总了Python中matplotlib.cm.viridis方法的典型用法代码示例。如果您正苦于以下问题:Python cm.viridis方法的具体用法?Python cm.viridis怎么用?Python cm.viridis使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.cm
的用法示例。
在下文中一共展示了cm.viridis方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: show_animation
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import viridis [as 别名]
def show_animation():
w = 1 << 9
h = 1 << 9
# w = 1920
# h = 1080
sl = SmoothLife(h, w)
sl.add_speckles()
sl.step()
fig = plt.figure()
# Nice color maps: viridis, plasma, gray, binary, seismic, gnuplot
im = plt.imshow(sl.field, animated=True,
cmap=plt.get_cmap("viridis"), aspect="equal")
def animate(*args):
im.set_array(sl.step())
return (im, )
ani = animation.FuncAnimation(fig, animate, interval=60, blit=True)
plt.show()
示例2: plot_mean_quantity_tgas
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import viridis [as 别名]
def plot_mean_quantity_tgas(self,tag,func=None,**kwargs):
"""
NAME:
plot_mean_quantity_tgas
PURPOSE:
Plot the mean of a quantity in the TGAS catalog on the sky
INPUT:
tag - tag in the TGAS data to plot
func= if set, a function to apply to the quantity
+healpy.mollview plotting kwargs
OUTPUT:
plot to output device
HISTORY:
2017-01-17 - Written - Bovy (UofT/CCA)
"""
mq= self._compute_mean_quantity_tgas(tag,func=func)
cmap= cm.viridis
cmap.set_under('w')
kwargs['unit']= kwargs.get('unit',tag)
kwargs['title']= kwargs.get('title',"")
healpy.mollview(mq,nest=True,cmap=cmap,**kwargs)
return None
示例3: create_color_bar
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import viridis [as 别名]
def create_color_bar(n_iterations,bar_label = "Iteration"):
fig = plt.figure(figsize=(2, 4.5))
ax1 = fig.add_axes([0.05, 0.05, 0.2, 0.9])
# Set the colormap and norm to correspond to the data for which
# the colorbar will be used.
cmap = mpl.cm.viridis
norm = mpl.colors.Normalize(vmin=1, vmax=n_iterations)
# ColorbarBase derives from ScalarMappable and puts a colorbar
# in a specified axes, so it has everything needed for a
# standalone colorbar. There are many more kwargs, but the
# following gives a basic continuous colorbar with ticks
# and labels.
cb1 = mpl.colorbar.ColorbarBase(ax1, cmap=cmap,
norm=norm,
orientation='vertical')
cb1.set_label(bar_label)
return fig, ax1
示例4: plot_sample_set
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import viridis [as 别名]
def plot_sample_set(x_train,z_all,env):
""" plot the sample set"""
s_train = x_train[:,:env.n_s]
n_train = np.shape(s_train)[0]
s_expl = z_all[:,:env.n_s]
n_it = np.shape(s_expl)[0]
fig, ax = env.plot_safety_bounds(color = "r")
c_spectrum = viridis(np.arange(n_it))
# plot initial dataset
for i in range(n_train):
ax = env.plot_state(ax,s_train[i,:env.n_s],color = c_spectrum[0])
# plot the data gatehred
for i in range(n_it):
ax = env.plot_state(ax,s_expl[i,:env.n_s],color = c_spectrum[i])
return fig, ax
示例5: plot_sample_set
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import viridis [as 别名]
def plot_sample_set(x_train,z_all,env):
""" plot the sample set"""
s_train = x_train[:,:env.n_s]
n_train = np.shape(s_train)[0]
s_expl = z_all[:,:env.n_s]
n_it = np.shape(s_expl)[0]
fig, ax = env.plot_safety_bounds(color = "r")
c_spectrum = viridis(np.arange(n_it))
# plot initial dataset
for i in range(n_train):
ax = env.plot_state(ax,s_train[i,:env.n_s],color = c_spectrum[0])
# plot the data gatehred
for i in range(n_it) :
ax = env.plot_state(ax,s_expl[i,:env.n_s],color = c_spectrum[i])
return fig, ax
示例6: _get_next_data
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import viridis [as 别名]
def _get_next_data(self):
"""Grabs a fresh pair of source and target data points.
"""
self._pair_idx += 1
self.imgs, labels, center = next(self._dloader)
self.center = center[0]
label = labels[0]
self.xs, self.xt = self.imgs[:, :self._num_channels, :, :], self.imgs[:, self._num_channels:, :, :]
if self._num_channels == 4:
self._xs_np = ml.tensor2ndarray(self.xs[:, :3], [self._color_mean * 3, self._color_std * 3])
self._xt_np = ml.tensor2ndarray(self.xt[:, :3], [self._color_mean * 3, self._color_std * 3])
else:
self._xs_np = ml.tensor2ndarray(self.xs[:, :1], [self._color_mean, self._color_std], False)
self._xt_np = ml.tensor2ndarray(self.xt[:, :1], [self._color_mean, self._color_std], False)
self._xs_np = np.uint8(cm.viridis(self._xs_np) * 255)[..., :3]
self._xt_np = np.uint8(cm.viridis(self._xt_np) * 255)[..., :3]
source_idxs = label[:, 0:2]
target_idxs = label[:, 2:4]
rot_idx = label[:, 4]
is_match = label[:, 5]
self.best_rot_idx = rot_idx[0].item()
mask = (is_match == 1) & (rot_idx == self.best_rot_idx)
self.source_pixel_idxs = source_idxs[mask].numpy()
self.target_pixel_idxs = target_idxs[mask].numpy()
示例7: test
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import viridis [as 别名]
def test():
n = int(1e6)
dataset = GaussianGridDataset(n)
samples = dataset.data
fig, ax = plt.subplots(1, 1, figsize=(5, 5))
# ax.hist2d(samples[:, 0], samples[:, 1],
# range=[[0, 1], [0, 1]], bins=512, cmap=cm.viridis)
ax.hist2d(samples[:, 0], samples[:, 1], range=[[-4, 4], [-4, 4]], bins=512,
cmap=cm.viridis)
ax.set_xticks([])
ax.set_yticks([])
plt.show()
# path = os.path.join(utils.get_output_root(), 'plane-test.png')
# plt.savefig(path, rasterized=True)
示例8: imshow
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import viridis [as 别名]
def imshow (Z, vmin=None, vmax=None, cmap=viridis, show_cmap=True):
''' Show a 2D numpy array using terminal colors '''
Z = np.atleast_2d(Z)
if len(Z.shape) != 2:
print("Cannot display non 2D array")
return
vmin = vmin or Z.min()
vmax = vmax or Z.max()
# Build initialization string that setup terminal colors
init = ''
for i in range(240):
v = i/240
r,g,b,a = cmap(v)
init += "\x1b]4;%d;rgb:%02x/%02x/%02x\x1b\\" % (16+i, int(r*255),int(g*255),int(b*255))
# Build array data string
data = ''
for i in range(Z.shape[0]):
for j in range(Z.shape[1]):
c = 16 + int( ((Z[Z.shape[0]-i-1,j]-vmin) / (vmax-vmin))*239)
if (c < 16):
c=16
elif (c > 255):
c=255
data += "\x1b[48;5;%dm " % c
u = vmax - (i/float(max(Z.shape[0]-1,1))) * ((vmax-vmin))
if show_cmap:
data += "\x1b[0m "
data += "\x1b[48;5;%dm " % (16 + (1-i/float(Z.shape[0]))*239)
data += "\x1b[0m %+.2f" % u
data += "\n"
sys.stdout.write(init+'\n')
sys.stdout.write(data+'\n')
示例9: save_animation
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import viridis [as 别名]
def save_animation():
w = 1 << 8
h = 1 << 8
# w = 1920
# h = 1080
sl = SmoothLife(h, w)
sl.add_speckles()
# Matplotlib shoves a horrible border on animation saves.
# We'll do it manually. Ugh
from skvideo.io import FFmpegWriter
from matplotlib import cm
fps = 10
frames = 100
w = FFmpegWriter("smoothlife.mp4", inputdict={"-r": str(fps)})
for i in range(frames):
frame = cm.viridis(sl.field)
frame *= 255
frame = frame.astype("uint8")
w.writeFrame(frame)
sl.step()
w.close()
# Also, webm output isn't working for me,
# so I have to manually convert. Ugh
# ffmpeg -i smoothlife.mp4 -c:v libvpx -b:v 2M smoothlife.webm
示例10: plot_2mass
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import viridis [as 别名]
def plot_2mass(self,jmin=None,jmax=None,
jkmin=None,jkmax=None,
cut=False,
**kwargs):
"""
NAME:
plot_2mass
PURPOSE:
Plot star counts in 2MASS
INPUT:
If the following are not set, fullsky will be plotted:
jmin, jmax= minimum and maximum Jt
jkmin, jkmax= minimum and maximum J-Ks
cut= (False) if True, cut to the 'good' sky
+healpy.mollview plotting kwargs
OUTPUT:
plot to output device
HISTORY:
2017-01-17 - Written - Bovy (UofT/CCA)
"""
# Select stars
if jmin is None or jmax is None \
or jkmin is None or jkmax is None:
pt= _2mc_skyonly[1]
else:
pindx= (_2mc[0] > jmin)*(_2mc[0] < jmax)\
*(_2mc[1] > jkmin)*(_2mc[1] < jkmax)
pt, e= numpy.histogram(_2mc[2][pindx],
range=[-0.5,_BASE_NPIX-0.5],
bins=_BASE_NPIX)
pt= numpy.log10(pt)
if cut: pt[self._exclude_mask_skyonly]= healpy.UNSEEN
cmap= cm.viridis
cmap.set_under('w')
kwargs['unit']= r'$\log_{10}\mathrm{number\ counts}$'
kwargs['title']= kwargs.get('title',"")
healpy.mollview(pt,nest=True,cmap=cmap,**kwargs)
return None
示例11: plot_tgas
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import viridis [as 别名]
def plot_tgas(self,jmin=None,jmax=None,
jkmin=None,jkmax=None,
cut=False,
**kwargs):
"""
NAME:
plot_tgas
PURPOSE:
Plot star counts in TGAS
INPUT:
If the following are not set, fullsky will be plotted:
jmin, jmax= minimum and maximum Jt
jkmin, jkmax= minimum and maximum J-Ks
cut= (False) if True, cut to the 'good' sky
+healpy.mollview plotting kwargs
OUTPUT:
plot to output device
HISTORY:
2017-01-17 - Written - Bovy (UofT/CCA)
"""
# Select stars
if jmin is None or jmax is None \
or jkmin is None or jkmax is None:
pt= self._nstar_tgas_skyonly
else:
pindx= (self._full_jt > jmin)*(self._full_jt < jmax)\
*(self._full_jk > jkmin)*(self._full_jk < jkmax)
pt, e= numpy.histogram((self._full_tgas['source_id']/2**(35.\
+2*(12.-numpy.log2(_BASE_NSIDE)))).astype('int')[pindx],
range=[-0.5,_BASE_NPIX-0.5],
bins=_BASE_NPIX)
pt= numpy.log10(pt)
if cut: pt[self._exclude_mask_skyonly]= healpy.UNSEEN
cmap= cm.viridis
cmap.set_under('w')
kwargs['unit']= r'$\log_{10}\mathrm{number\ counts}$'
kwargs['title']= kwargs.get('title',"")
healpy.mollview(pt,nest=True,cmap=cmap,**kwargs)
return None
示例12: plot_sample_set
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import viridis [as 别名]
def plot_sample_set(z_all,env,y_label = False, x_train = None):
""" plot the sample set"""
s_expl = z_all[:,:env.n_s]
n_it = np.shape(s_expl)[0]
fig, ax = env.plot_safety_bounds(color = "r")
c_spectrum = viridis(np.arange(n_it))
# plot initial dataset
if not x_train is None:
s_train = x_train[:,:env.n_s]
n_train = np.shape(s_train)[0]
for i in range(n_train):
ax = env.plot_state(ax,s_train[i,:env.n_s],color = c_spectrum[0])
# plot the data gatehred
for i in range(n_it):
ax = env.plot_state(ax,s_expl[i,:env.n_s],color = c_spectrum[i])
ax.set_xlabel("Angular velocity $\dot{\\theta}$")
print(y_label)
if y_label:
print("??")
ax.set_ylabel("Angle $\\theta$")
fig.set_size_inches(3.6,4.5)
return fig, ax
示例13: _draw_rotations
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import viridis [as 别名]
def _draw_rotations(self, init=False, heatmap=True):
def _hist_eq(img):
from skimage import exposure
img_cdf, bin_centers = exposure.cumulative_distribution(img)
return np.interp(img, bin_centers, img_cdf)
for col in range(5):
for row in range(4):
offset = col * 4 + row
if init:
img = self._zeros.copy()
else:
if heatmap:
img = self.heatmaps[offset].copy()
img = img / img.max()
img = _hist_eq(img)
img = np.uint8(cm.viridis(img) * 255)[..., :3]
img = img.copy()
else:
img = misc.rotate_img(self._xs_np, -(360 / 20) * offset, center=(self.center[1], self.center[0]))
img = img.copy()
if offset == self._uv[-1]:
img[
self._uv[0] - 1 : self._uv[0] + 1,
self._uv[1] - 1 : self._uv[1] + 1,
] = [255, 0, 0]
self._add_border_clr(img, [255, 0, 0])
if offset == self.best_rot_idx:
self._add_border_clr(img, [0, 255, 0])
self._img = QImage(
img.data, self._w, self._h, self._c * self._w, QImage.Format_RGB888
)
pixmap = QPixmap.fromImage(self._img)
self._grid_widgets[offset].setPixmap(pixmap)
self._grid_widgets[offset].setScaledContents(True)
示例14: _string_to_cmap
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import viridis [as 别名]
def _string_to_cmap(cm_name):
"""Return colormap given name.
Parameters:
cm_name (str):
Name of colormap.
Returns:
`matplotlib.cm <http://matplotlib.org/api/cm_api.html>`_ (colormap)
object
"""
if isinstance(cm_name, str):
if 'linearlab' in cm_name:
try:
cmap, cmap_r = linearlab()
except IOError:
cmap = cm.viridis
else:
if '_r' in cm_name:
cmap = cmap_r
else:
cmap = cm.get_cmap(cm_name)
elif isinstance(cm_name, ListedColormap) or isinstance(cm_name, LinearSegmentedColormap):
cmap = cm_name
else:
raise MarvinError('{} is not a valid cmap'.format(cm_name))
return cmap
示例15: plotSubFigure
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import viridis [as 别名]
def plotSubFigure(X, Y, Z, subfig, type_):
fig = plt.gcf()
ax = fig.add_subplot(1, 3, subfig, projection='3d')
#ax = fig.gca(projection='3d')
if type_ == "colormap":
ax.plot_surface(X, Y, Z, cmap=cm.viridis, rstride=1, cstride=1,
shade=True, linewidth=0, antialiased=False)
else:
ax.plot_surface(X, Y, Z, color=[0.7, 0.7, 0.7], rstride=1, cstride=1,
shade=True, linewidth=0, antialiased=False)
ax.set_aspect("equal")
max_range = np.array([X.max()-X.min(), Y.max()-Y.min(), Z.max()-Z.min()]).max() / 2.0 * 0.6
mid_x = (X.max()+X.min()) * 0.5
mid_y = (Y.max()+Y.min()) * 0.5
mid_z = (Z.max()+Z.min()) * 0.5
ax.set_xlim(mid_x - max_range, mid_x + max_range)
ax.set_ylim(mid_y - max_range, mid_y + max_range)
ax.set_zlim(mid_z - max_range, mid_z + max_range)
az, el = 90, 90
if type_ == "top":
az = 130
elif type_ == "side":
az, el = 40, 0
ax.view_init(az, el)
fig.subplots_adjust(left=0, right=1, bottom=0, top=1)
plt.grid(False)
plt.axis('off')