本文整理汇总了Python中matplotlib.cm.jet方法的典型用法代码示例。如果您正苦于以下问题:Python cm.jet方法的具体用法?Python cm.jet怎么用?Python cm.jet使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.cm
的用法示例。
在下文中一共展示了cm.jet方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plotNNFilter
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import jet [as 别名]
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None):
plt.ion()
filters = units.shape[2]
n_columns = round(math.sqrt(filters))
n_rows = math.ceil(filters / n_columns) + 1
fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3))
fig.clf()
for i in range(filters):
ax1 = plt.subplot(n_rows, n_columns, i+1)
plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
plt.colorbar()
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
# Epochs
示例2: plotNNFilter
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import jet [as 别名]
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None):
plt.ion()
filters = units.shape[2]
n_columns = round(math.sqrt(filters))
n_rows = math.ceil(filters / n_columns) + 1
fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3))
fig.clf()
for i in range(filters):
ax1 = plt.subplot(n_rows, n_columns, i+1)
plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
plt.colorbar()
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
# Load options
示例3: plotNNFilter
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import jet [as 别名]
def plotNNFilter(units, figure_id, interp='bilinear', colormap=cm.jet, colormap_lim=None, title=''):
plt.ion()
filters = units.shape[2]
n_columns = round(math.sqrt(filters))
n_rows = math.ceil(filters / n_columns) + 1
fig = plt.figure(figure_id, figsize=(n_rows*3,n_columns*3))
fig.clf()
for i in range(filters):
ax1 = plt.subplot(n_rows, n_columns, i+1)
plt.imshow(units[:,:,i].T, interpolation=interp, cmap=colormap)
plt.axis('on')
ax1.set_xticklabels([])
ax1.set_yticklabels([])
plt.colorbar()
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
plt.suptitle(title)
示例4: plotNNFilterOverlay
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import jet [as 别名]
def plotNNFilterOverlay(input_im, units, figure_id, interp='bilinear',
colormap=cm.jet, colormap_lim=None, title='', alpha=0.8):
plt.ion()
filters = units.shape[2]
fig = plt.figure(figure_id, figsize=(5,5))
fig.clf()
for i in range(filters):
plt.imshow(input_im[:,:,0], interpolation=interp, cmap='gray')
plt.imshow(units[:,:,i], interpolation=interp, cmap=colormap, alpha=alpha)
plt.axis('off')
plt.colorbar()
plt.title(title, fontsize='small')
if colormap_lim:
plt.clim(colormap_lim[0],colormap_lim[1])
plt.subplots_adjust(wspace=0, hspace=0)
plt.tight_layout()
# plt.savefig('{}/{}.png'.format(dir_name,time.time()))
## Load options
示例5: test_kde_colors
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import jet [as 别名]
def test_kde_colors(self):
_skip_if_no_scipy_gaussian_kde()
from matplotlib import cm
custom_colors = 'rgcby'
df = DataFrame(rand(5, 5))
ax = df.plot.kde(color=custom_colors)
self._check_colors(ax.get_lines(), linecolors=custom_colors)
tm.close()
ax = df.plot.kde(colormap='jet')
rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
self._check_colors(ax.get_lines(), linecolors=rgba_colors)
tm.close()
ax = df.plot.kde(colormap=cm.jet)
rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
self._check_colors(ax.get_lines(), linecolors=rgba_colors)
示例6: plot_stacked_power_generation
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import jet [as 别名]
def plot_stacked_power_generation(results, ax=None, kind='bar', legend=False):
if ax is None:
fig, axs = plt.subplots(1, 1, figsize=(16, 10))
ax = axs
df = results.power_generated
cols = (df - results.unit_commitment*results.maximum_power_output).std().sort_values().index
df = df[[c for c in cols]]
df.plot(kind=kind, stacked=True, ax=ax, colormap=cm.jet, alpha=0.5, legend=legend)
df = results.unit_commitment * results.maximum_power_output
df = df[[c for c in cols]]
df.plot.area(stacked=True, ax=ax, alpha=0.125/2, colormap=cm.jet, legend=None)
ax.set_ylabel('Dispatch and Committed Capacity (MW)')
ax.set_xlabel('Time (h)')
return ax
示例7: plot3D_data
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import jet [as 别名]
def plot3D_data(data, x, y):
X,Y = meshgrid(x,y)
fig = plt.figure()
ax = Axes3D(fig)
#ax = fig.add_subplot(111, projection = "3d")
ax.plot_surface(X, Y, data, rstride=1, cstride=1, cmap=cm.jet)
#def conditions_emitt_spread(screen):
# if screen.ne ==1 and (screen.nx and screen.ny):
# effect = 1
# elif screen.ne ==1 and (screen.nx==1 and screen.ny):
# effect = 2
# elif screen.ne ==1 and (screen.nx and screen.ny == 1):
# effect = 3
# elif screen.ne >1 and (screen.nx == 1 and screen.ny == 1):
# effect = 4
# else:
# effect = 0
# return effect
示例8: test_kde_colors
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import jet [as 别名]
def test_kde_colors(self):
_skip_if_no_scipy_gaussian_kde()
if not self.mpl_ge_1_5_0:
pytest.skip("mpl is not supported")
from matplotlib import cm
custom_colors = 'rgcby'
df = DataFrame(rand(5, 5))
ax = df.plot.kde(color=custom_colors)
self._check_colors(ax.get_lines(), linecolors=custom_colors)
tm.close()
ax = df.plot.kde(colormap='jet')
rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
self._check_colors(ax.get_lines(), linecolors=rgba_colors)
tm.close()
ax = df.plot.kde(colormap=cm.jet)
rgba_colors = lmap(cm.jet, np.linspace(0, 1, len(df)))
self._check_colors(ax.get_lines(), linecolors=rgba_colors)
示例9: plot4
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import jet [as 别名]
def plot4():
# Density 1
Z = gen_gaussian_plot_vals(x_hat, Σ)
cs1 = ax.contour(X, Y, Z, 6, colors="black")
ax.clabel(cs1, inline=1, fontsize=10)
# Density 2
M = Σ * G.T * linalg.inv(G * Σ * G.T + R)
x_hat_F = x_hat + M * (y - G * x_hat)
Σ_F = Σ - M * G * Σ
Z_F = gen_gaussian_plot_vals(x_hat_F, Σ_F)
cs2 = ax.contour(X, Y, Z_F, 6, colors="black")
ax.clabel(cs2, inline=1, fontsize=10)
# Density 3
new_x_hat = A * x_hat_F
new_Σ = A * Σ_F * A.T + Q
new_Z = gen_gaussian_plot_vals(new_x_hat, new_Σ)
cs3 = ax.contour(X, Y, new_Z, 6, colors="black")
ax.clabel(cs3, inline=1, fontsize=10)
ax.contourf(X, Y, new_Z, 6, alpha=0.6, cmap=cm.jet)
ax.text(float(y[0]), float(y[1]), r"$y$", fontsize=20, color="black")
# == Choose a plot to generate == #
示例10: add_polar_bar
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import jet [as 别名]
def add_polar_bar():
ax = fig.add_axes([0.025, 0.075, 0.2, 0.85], projection='polar')
ax.patch.set_alpha(axalpha)
ax.set_axisbelow(True)
N = 7
arc = 2. * np.pi
theta = np.arange(0.0, arc, arc/N)
radii = 10 * np.array([0.2, 0.6, 0.8, 0.7, 0.4, 0.5, 0.8])
width = np.pi / 4 * np.array([0.4, 0.4, 0.6, 0.8, 0.2, 0.5, 0.3])
bars = ax.bar(theta, radii, width=width, bottom=0.0)
for r, bar in zip(radii, bars):
bar.set_facecolor(cm.jet(r/10.))
bar.set_alpha(0.6)
ax.tick_params(labelbottom=False, labeltop=False,
labelleft=False, labelright=False)
ax.grid(lw=0.8, alpha=0.9, ls='-', color='0.5')
ax.set_yticks(np.arange(1, 9, 2))
ax.set_rmax(9)
示例11: estimate_density_map
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import jet [as 别名]
def estimate_density_map(img_root,gt_dmap_root,model_param_path,index):
'''
Show one estimated density-map.
img_root: the root of test image data.
gt_dmap_root: the root of test ground truth density-map data.
model_param_path: the path of specific mcnn parameters.
index: the order of the test image in test dataset.
'''
device=torch.device("cuda")
model=CANNet().to(device)
model.load_state_dict(torch.load(model_param_path))
dataset=CrowdDataset(img_root,gt_dmap_root,8,phase='test')
dataloader=torch.utils.data.DataLoader(dataset,batch_size=1,shuffle=False)
model.eval()
for i,(img,gt_dmap) in enumerate(dataloader):
if i==index:
img=img.to(device)
gt_dmap=gt_dmap.to(device)
# forward propagation
et_dmap=model(img).detach()
et_dmap=et_dmap.squeeze(0).squeeze(0).cpu().numpy()
print(et_dmap.shape)
plt.imshow(et_dmap,cmap=CM.jet)
break
示例12: init_fig
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import jet [as 别名]
def init_fig(*args, **kwargs):
'''Initialize figures.'''
fig = tfmpl.create_figure(figsize=(8,6))
ax = fig.add_subplot(111, projection='3d', elev=50, azim=-30)
ax.w_xaxis.set_pane_color((1.0,1.0,1.0,1.0))
ax.w_yaxis.set_pane_color((1.0,1.0,1.0,1.0))
ax.w_zaxis.set_pane_color((1.0,1.0,1.0,1.0))
ax.set_title('Gradient descent on Beale surface')
ax.set_xlabel('$x$')
ax.set_ylabel('$y$')
ax.set_zlabel('beale($x$,$y$)')
xx, yy = np.meshgrid(np.linspace(-4.5, 4.5, 40), np.linspace(-4.5, 4.5, 40))
zz = beale(xx, yy)
ax.plot_surface(xx, yy, zz, norm=LogNorm(), rstride=1, cstride=1, edgecolor='none', alpha=.8, cmap=cm.jet)
ax.plot([3], [.5], [beale(3, .5)], 'k*', markersize=5)
for o in optimizers:
path, = ax.plot([],[],[], label=o[1])
paths.append(path)
ax.legend(loc='upper left')
fig.tight_layout()
return fig, paths
示例13: __init__
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import jet [as 别名]
def __init__(self, nelx, nely, stress_calculator, nu, title=""):
"""Initialize plot and plot the initial design"""
super(StressGUI, self).__init__(nelx, nely, title)
self.stress_im = self.ax.imshow(
np.swapaxes(np.zeros((nelx, nely, 4)), 0, 1),
norm=colors.Normalize(vmin=0, vmax=1), cmap='jet')
self.fig.colorbar(self.stress_im)
self.stress_calculator = stress_calculator
self.nu = nu
self.myColorMap = colormaps.ScalarMappable(
norm=colors.Normalize(vmin=0, vmax=1), cmap=colormaps.jet)
示例14: test_radviz
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import jet [as 别名]
def test_radviz(self, iris):
from pandas.plotting import radviz
from matplotlib import cm
df = iris
_check_plot_works(radviz, frame=df, class_column='Name')
rgba = ('#556270', '#4ECDC4', '#C7F464')
ax = _check_plot_works(
radviz, frame=df, class_column='Name', color=rgba)
# skip Circle drawn as ticks
patches = [p for p in ax.patches[:20] if p.get_label() != '']
self._check_colors(
patches[:10], facecolors=rgba, mapping=df['Name'][:10])
cnames = ['dodgerblue', 'aquamarine', 'seagreen']
_check_plot_works(radviz, frame=df, class_column='Name', color=cnames)
patches = [p for p in ax.patches[:20] if p.get_label() != '']
self._check_colors(patches, facecolors=cnames, mapping=df['Name'][:10])
_check_plot_works(radviz, frame=df,
class_column='Name', colormap=cm.jet)
cmaps = lmap(cm.jet, np.linspace(0, 1, df['Name'].nunique()))
patches = [p for p in ax.patches[:20] if p.get_label() != '']
self._check_colors(patches, facecolors=cmaps, mapping=df['Name'][:10])
colors = [[0., 0., 1., 1.],
[0., 0.5, 1., 1.],
[1., 0., 0., 1.]]
df = DataFrame({"A": [1, 2, 3],
"B": [2, 1, 3],
"C": [3, 2, 1],
"Name": ['b', 'g', 'r']})
ax = radviz(df, 'Name', color=colors)
handles, labels = ax.get_legend_handles_labels()
self._check_colors(handles, facecolors=colors)
示例15: test_bar_colors
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import jet [as 别名]
def test_bar_colors(self):
import matplotlib.pyplot as plt
default_colors = self._unpack_cycler(plt.rcParams)
df = DataFrame(randn(5, 5))
ax = df.plot.bar()
self._check_colors(ax.patches[::5], facecolors=default_colors[:5])
tm.close()
custom_colors = 'rgcby'
ax = df.plot.bar(color=custom_colors)
self._check_colors(ax.patches[::5], facecolors=custom_colors)
tm.close()
from matplotlib import cm
# Test str -> colormap functionality
ax = df.plot.bar(colormap='jet')
rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5))
self._check_colors(ax.patches[::5], facecolors=rgba_colors)
tm.close()
# Test colormap functionality
ax = df.plot.bar(colormap=cm.jet)
rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5))
self._check_colors(ax.patches[::5], facecolors=rgba_colors)
tm.close()
ax = df.loc[:, [0]].plot.bar(color='DodgerBlue')
self._check_colors([ax.patches[0]], facecolors=['DodgerBlue'])
tm.close()
ax = df.plot(kind='bar', color='green')
self._check_colors(ax.patches[::5], facecolors=['green'] * 5)
tm.close()