本文整理汇总了Python中matplotlib.cm.hsv方法的典型用法代码示例。如果您正苦于以下问题:Python cm.hsv方法的具体用法?Python cm.hsv怎么用?Python cm.hsv使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib.cm
的用法示例。
在下文中一共展示了cm.hsv方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: draw
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import hsv [as 别名]
def draw(self, dbscan_input_array, dbscan_label, dbscan_label_n):
# convert array to image
frame_draw = np.zeros((self.__compress_height, self.__compress_width), np.uint8)
frame_draw = cv2.cvtColor(frame_draw, cv2.COLOR_GRAY2RGB)
for i in range(dbscan_input_array.shape[0]):
if not dbscan_label[i] == -1:
color_th = dbscan_label[i] / dbscan_label_n
c_r = int(cm.hsv(color_th)[0]*255)
c_g = int(cm.hsv(color_th)[1]*255)
c_b = int(cm.hsv(color_th)[2]*255)
frame_draw = cv2.circle(frame_draw, \
(int(dbscan_input_array[i][0]), \
int(dbscan_input_array[i][1])), \
1, (c_r, c_g, c_b), 1)
return frame_draw
示例2: hsv
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import hsv [as 别名]
def hsv():
'''
set the default colormap to hsv and apply to current image if any.
See help(colormaps) for more information
'''
rc('image', cmap='hsv')
im = gci()
if im is not None:
im.set_cmap(cm.hsv)
draw_if_interactive()
# This function was autogenerated by boilerplate.py. Do not edit as
# changes will be lost
示例3: plot_2d_clusters
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import hsv [as 别名]
def plot_2d_clusters(X, labels, centers):
"""
Given an observation array, a label vector, and the location of the centers
plot the clusters
"""
clabels = set(labels)
K = len(clabels)
if len(centers) != K:
raise ValueError("Expecting the number of unique labels and centres to"
" be the same!")
# Plot the true clusters
figure(figsize=(10, 10))
ax = gca()
vor = Voronoi(centers)
voronoi_plot_2d(vor, ax)
colors = cm.hsv(np.arange(K)/float(K))
for k, col in enumerate(colors):
my_members = labels == k
scatter(X[my_members, 0], X[my_members, 1], c=col, marker='o', s=20)
for k, col in enumerate(colors):
cluster_center = centers[k]
scatter(cluster_center[0], cluster_center[1], c=col, marker='o', s=200)
axis('tight')
axis('equal')
title('Clusters')
示例4: plot_2d_GMMs
# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import hsv [as 别名]
def plot_2d_GMMs(X, labels, means, covs, percentcontour=0.66, npoints=30):
"""
Given an observation array, a label vector (integer values), and GMM mean
and covariance parameters, plot the clusters and parameters.
"""
clabels = set(labels)
K = len(clabels)
if len(means) != len(covs) != K:
raise ValueError("Expecting the number of unique labels, means and"
"covariances to be the same!")
phi = np.linspace(-np.pi, np.pi, npoints)
circle = np.array([np.sin(phi), np.cos(phi)]).T
figure(figsize=(10, 10))
gca()
colors = cm.hsv(np.arange(K)/float(K))
for k, col in zip(clabels, colors):
# points
my_members = labels == k
scatter(X[my_members, 0], X[my_members, 1], c=col, marker='o', s=20)
# means
cluster_center = means[k, :]
scatter(cluster_center[0], cluster_center[1], c=col, marker='o', s=200)
# covariance
L = la.cholesky(np.array(covs[k]) * chi2.ppf(percentcontour, [3])
+ 1e-5 * np.eye(covs[k].shape[0]))
covpoints = circle.dot(L) + means[k, :]
plot(covpoints[:, 0], covpoints[:, 1], color=col, linewidth=3)
axis('tight')
axis('equal')
title('Clusters')