当前位置: 首页>>代码示例>>Python>>正文


Python cm.colors方法代码示例

本文整理汇总了Python中matplotlib.cm.colors方法的典型用法代码示例。如果您正苦于以下问题:Python cm.colors方法的具体用法?Python cm.colors怎么用?Python cm.colors使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在matplotlib.cm的用法示例。


在下文中一共展示了cm.colors方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: colorize

# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import colors [as 别名]
def colorize(value, vmin=None, vmax=None, cmap=None):
    # normalize
    vmin = tf.reduce_min(value) if vmin is None else vmin
    vmax = tf.reduce_max(value) if vmax is None else vmax
    value = (value - vmin) / (vmax - vmin)  # vmin..vmax

    # squeeze last dim if it exists
    value = tf.squeeze(value)

    # quantize
    indices = tf.to_int32(tf.round(value * 255))

    # gather
    cm = matplotlib.cm.get_cmap(cmap if cmap is not None else 'gray')
    colors = tf.constant(cm.colors, dtype=tf.float32)
    value = tf.gather(colors, indices)

    return value 
开发者ID:FangGet,项目名称:tf-monodepth2,代码行数:20,代码来源:tools.py

示例2: colorize

# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import colors [as 别名]
def colorize(img, vmin=None, vmax=None, cmap='plasma'):
    # normalize
    vmin = tf.reduce_min(img) if vmin is None else vmin
    vmax = tf.contrib.distributions.percentile(img, 99.) if vmax is None else vmax
    img = (img - vmin) / (vmax - vmin)

    img = tf.squeeze(img, axis=[-1])

    # quantize
    indices = tf.clip_by_value(tf.to_int32(tf.round(img * 255)), 0, 255)

    # gather
    cm = matplotlib.cm.get_cmap(cmap if cmap is not None else 'gray')
    colors = tf.constant(cm.colors, dtype=tf.float32)
    img = tf.gather(colors, indices)

    return img 
开发者ID:flkraus,项目名称:bayesian-yolov3,代码行数:19,代码来源:vis_uncertainty.py

示例3: tf_colorize

# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import colors [as 别名]
def tf_colorize(value, factor=1, vmin=None, vmax=None, cmap=None):
    """
    A utility function for TensorFlow that maps a grayscale image to a matplotlib
    colormap for use with TensorBoard image summaries.

    By default it will normalize the input value to the range 0..1 before mapping
    to a grayscale colormap.

    Arguments:
      - value: 2D Tensor of shape [height, width] or 3D Tensor of shape
        [height, width, 1].
      - factor: resize factor, scalar
      - vmin: the minimum value of the range used for normalization.
        (Default: value minimum)
      - vmax: the maximum value of the range used for normalization.
        (Default: value maximum)
      - cmap: a valid cmap named for use with matplotlib's `get_cmap`.
        (Default: 'gray')

    Example usage:

    ```
    output = tf.random_uniform(shape=[256, 256, 1])
    output_color = colorize(output, vmin=0.0, vmax=1.0, cmap='viridis')
    tf.summary.image('output', output_color)
    ```

    Returns a 3D tensor of shape [height, width, 3].
    """

    # normalize
    vmin = tf.reduce_min(value) if vmin is None else vmin
    vmax = tf.reduce_max(value) if vmax is None else vmax
    value = (value - vmin) / (vmax - vmin)  # vmin..vmax

    # squeeze last dim if it exists
    value = tf.squeeze(value)

    # quantize
    indices = tf.to_int32(tf.round(value * 255))

    # gather
    cm = matplotlib.cm.get_cmap(cmap if cmap is not None else 'gray')
    colors = tf.constant(cm.colors, dtype=tf.float32)
    value = tf.gather(colors, indices)

    return value 
开发者ID:pyun-ram,项目名称:FL3D,代码行数:49,代码来源:colorize.py

示例4: colorize_image

# 需要导入模块: from matplotlib import cm [as 别名]
# 或者: from matplotlib.cm import colors [as 别名]
def colorize_image(value, vmin=None, vmax=None, cmap='viridis'):
  """
  A utility function for TensorFlow that maps a grayscale image to a matplotlib
  colormap for use with TensorBoard image summaries.

  By default it will normalize the input value to the range 0..1 before mapping
  to a grayscale colormap.

  Arguments:
    - value: 2D Tensor of shape [height, width] or 3D Tensor of shape
      [height, width, 1].
    - vmin: the minimum value of the range used for normalization.
      (Default: value minimum)
    - vmax: the maximum value of the range used for normalization.
      (Default: value maximum)
    - cmap: a valid cmap named for use with matplotlib's `get_cmap`.
      (Default: 'gray')

  Example usage:

  ```
  output = tf.random_uniform(shape=[256, 256, 1])
  output_color = colorize(output, vmin=0.0, vmax=1.0, cmap='viridis')
  tf.summary.image('output', output_color)
  ```

  Returns a 3D tensor of shape [height, width, 3].
  """

  # normalize
  vmin = tf.reduce_min(value) if vmin is None else vmin
  vmax = tf.reduce_max(value) if vmax is None else vmax
  value = (value - vmin) / (vmax - vmin) # vmin..vmax

  # squeeze last dim if it exists
  value = tf.squeeze(value)

  # quantize
  indices = tf.to_int32(tf.round(value * 255))

  # gather
  import matplotlib.cm
  cm = matplotlib.cm.get_cmap(cmap if cmap is not None else 'gray')
  colors = tf.constant(cm.colors, dtype=tf.float32)
  value = tf.gather(colors, indices)

  return value 
开发者ID:afourast,项目名称:deep_lip_reading,代码行数:49,代码来源:tb_util.py


注:本文中的matplotlib.cm.colors方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。