本文整理汇总了Python中matplotlib.axis方法的典型用法代码示例。如果您正苦于以下问题:Python matplotlib.axis方法的具体用法?Python matplotlib.axis怎么用?Python matplotlib.axis使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib
的用法示例。
在下文中一共展示了matplotlib.axis方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_xaxis_transform
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axis [as 别名]
def get_xaxis_transform(self, which='grid'):
"""
Get the transformation used for drawing x-axis labels, ticks
and gridlines. The x-direction is in data coordinates and the
y-direction is in axis coordinates.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
"""
if which == 'grid':
return self._xaxis_transform
elif which == 'tick1':
# for cartesian projection, this is bottom spine
return self.spines['bottom'].get_spine_transform()
elif which == 'tick2':
# for cartesian projection, this is top spine
return self.spines['top'].get_spine_transform()
else:
raise ValueError('unknown value for which')
示例2: get_xaxis_text2_transform
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axis [as 别名]
def get_xaxis_text2_transform(self, pad_points):
"""
Get the transformation used for drawing the secondary x-axis
labels, which will add the given amount of padding (in points)
between the axes and the label. The x-direction is in data
coordinates and the y-direction is in axis coordinates.
Returns a 3-tuple of the form::
(transform, valign, halign)
where *valign* and *halign* are requested alignments for the
text.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
"""
return (self.get_xaxis_transform(which='tick2') +
mtransforms.ScaledTranslation(0, pad_points / 72.0,
self.figure.dpi_scale_trans),
"bottom", "center")
示例3: get_yaxis_transform
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axis [as 别名]
def get_yaxis_transform(self, which='grid'):
"""
Get the transformation used for drawing y-axis labels, ticks
and gridlines. The x-direction is in axis coordinates and the
y-direction is in data coordinates.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
"""
if which == 'grid':
return self._yaxis_transform
elif which == 'tick1':
# for cartesian projection, this is bottom spine
return self.spines['left'].get_spine_transform()
elif which == 'tick2':
# for cartesian projection, this is top spine
return self.spines['right'].get_spine_transform()
else:
raise ValueError('unknown value for which')
示例4: get_yaxis_text1_transform
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axis [as 别名]
def get_yaxis_text1_transform(self, pad_points):
"""
Get the transformation used for drawing y-axis labels, which
will add the given amount of padding (in points) between the
axes and the label. The x-direction is in axis coordinates
and the y-direction is in data coordinates. Returns a 3-tuple
of the form::
(transform, valign, halign)
where *valign* and *halign* are requested alignments for the
text.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
"""
return (self.get_yaxis_transform(which='tick1') +
mtransforms.ScaledTranslation(-1 * pad_points / 72.0, 0,
self.figure.dpi_scale_trans),
"center", "right")
示例5: get_yaxis_text2_transform
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axis [as 别名]
def get_yaxis_text2_transform(self, pad_points):
"""
Get the transformation used for drawing the secondary y-axis
labels, which will add the given amount of padding (in points)
between the axes and the label. The x-direction is in axis
coordinates and the y-direction is in data coordinates.
Returns a 3-tuple of the form::
(transform, valign, halign)
where *valign* and *halign* are requested alignments for the
text.
.. note::
This transformation is primarily used by the
:class:`~matplotlib.axis.Axis` class, and is meant to be
overridden by new kinds of projections that may need to
place axis elements in different locations.
"""
return (self.get_yaxis_transform(which='tick2') +
mtransforms.ScaledTranslation(pad_points / 72.0, 0,
self.figure.dpi_scale_trans),
"center", "left")
示例6: set_xscale
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axis [as 别名]
def set_xscale(self, value, **kwargs):
"""
Call signature::
set_xscale(value)
Set the scaling of the x-axis: %(scale)s
ACCEPTS: [%(scale)s]
Different kwargs are accepted, depending on the scale:
%(scale_docs)s
"""
# If the scale is being set to log, clip nonposx to prevent headaches
# around zero
if value.lower() == 'log' and 'nonposx' not in kwargs.keys():
kwargs['nonposx'] = 'clip'
self.xaxis._set_scale(value, **kwargs)
self.autoscale_view(scaley=False)
self._update_transScale()
示例7: set_xticklabels
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axis [as 别名]
def set_xticklabels(self, labels, fontdict=None, minor=False, **kwargs):
"""
Call signature::
set_xticklabels(labels, fontdict=None, minor=False, **kwargs)
Set the xtick labels with list of strings *labels*. Return a
list of axis text instances.
*kwargs* set the :class:`~matplotlib.text.Text` properties.
Valid properties are
%(Text)s
ACCEPTS: sequence of strings
"""
return self.xaxis.set_ticklabels(labels, fontdict,
minor=minor, **kwargs)
示例8: set_yscale
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axis [as 别名]
def set_yscale(self, value, **kwargs):
"""
Call signature::
set_yscale(value)
Set the scaling of the y-axis: %(scale)s
ACCEPTS: [%(scale)s]
Different kwargs are accepted, depending on the scale:
%(scale_docs)s
"""
# If the scale is being set to log, clip nonposy to prevent headaches
# around zero
if value.lower() == 'log' and 'nonposy' not in kwargs.keys():
kwargs['nonposy'] = 'clip'
self.yaxis._set_scale(value, **kwargs)
self.autoscale_view(scalex=False)
self._update_transScale()
示例9: twiny
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axis [as 别名]
def twiny(self):
"""
Call signature::
ax = twiny()
create a twin of Axes for generating a plot with a shared
y-axis but independent x axis. The x-axis of self will have
ticks on bottom and the returned axes will have ticks on the
top.
.. note::
For those who are 'picking' artists while using twiny, pick
events are only called for the artists in the top-most axes.
"""
ax2 = self._make_twin_axes(sharey=self)
ax2.xaxis.tick_top()
ax2.xaxis.set_label_position('top')
self.xaxis.tick_bottom()
ax2.yaxis.set_visible(False)
ax2.patch.set_visible(False)
return ax2
示例10: set_axisbelow
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axis [as 别名]
def set_axisbelow(self, b):
"""
Set the zorder for the axes ticks and gridlines.
Parameters
----------
b : bool or 'line'
``True`` corresponds to a zorder of 0.5, ``False`` to a zorder of
2.5, and ``"line"`` to a zorder of 1.5.
"""
self._axisbelow = axisbelow = validate_axisbelow(b)
if axisbelow is True:
zorder = 0.5
elif axisbelow is False:
zorder = 2.5
elif axisbelow == "line":
zorder = 1.5
else:
raise ValueError("Unexpected axisbelow value")
for axis in self._get_axis_list():
axis.set_zorder(zorder)
self.stale = True
示例11: set_xticks
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axis [as 别名]
def set_xticks(self, ticks, minor=False):
"""
Set the x ticks with list of *ticks*
Parameters
----------
ticks : list
List of x-axis tick locations.
minor : bool, optional
If ``False`` sets major ticks, if ``True`` sets minor ticks.
Default is ``False``.
"""
ret = self.xaxis.set_ticks(ticks, minor=minor)
self.stale = True
return ret
示例12: get_ylim
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axis [as 别名]
def get_ylim(self):
"""
Get the y-axis range
Returns
-------
ylimits : tuple
Returns the current y-axis limits as the tuple
(`bottom`, `top`).
Notes
-----
The y-axis may be inverted, in which case the `bottom` value
will be greater than the `top` value.
"""
return tuple(self.viewLim.intervaly)
示例13: plotter
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axis [as 别名]
def plotter(args: argparse.Namespace):
config = vars(args)
subplots = tuple(config.pop("subplots"))
figsize = tuple(config.pop("figsize"))
_ = config.pop('func')
expected_max_performance_data = {}
average_times = {}
output_file = config.pop("output_file")
config = {config.pop("result_file"): config}
f, axes = plt.subplots(subplots[0], subplots[1], figsize=figsize)
if subplots != (1, 1):
axes_iter = zip(config.items(), np.ndenumerate(axes))
else:
axes_iter = zip(config.items(), enumerate([axes]))
for ((data_file, _), (index, _)) in axes_iter:
duration_field = config[data_file].pop('duration_field')
model_field = config[data_file].pop('model_field')
performance_metric_field = config[data_file].pop('performance_metric_field')
master = pd.read_json(data_file, lines=True)
data_sizes = [10000]
for data_size in data_sizes:
df = master
avg_time = df.groupby(model_field)[duration_field].mean()
sample_maxes = df.groupby(model_field)[performance_metric_field].apply(samplemax)
expected_max_performance_data[data_file] = {data_size: sample_maxes}
average_times[data_file] = {data_size: avg_time}
if subplots == (1,1):
axis = axes
elif subplots[1] > 1:
axis = axes[index[0], index[1]]
else:
axis = axes[index[0]]
_one_plot(sample_maxes,
avg_time,
data_size,
axis,
**config[data_file])
print("saving to {}".format(output_file))
plt.savefig(output_file, dpi=300)
示例14: __init__
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axis [as 别名]
def __init__(self, axis=None, use_rmin=True):
Transform.__init__(self)
self._axis = axis
self._use_rmin = use_rmin
示例15: _set_lim_and_transforms
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axis [as 别名]
def _set_lim_and_transforms(self):
"""
set the *dataLim* and *viewLim*
:class:`~matplotlib.transforms.Bbox` attributes and the
*transScale*, *transData*, *transLimits* and *transAxes*
transformations.
.. note::
This method is primarily used by rectilinear projections
of the :class:`~matplotlib.axes.Axes` class, and is meant
to be overridden by new kinds of projection axes that need
different transformations and limits. (See
:class:`~matplotlib.projections.polar.PolarAxes` for an
example.
"""
self.transAxes = mtransforms.BboxTransformTo(self.bbox)
# Transforms the x and y axis separately by a scale factor.
# It is assumed that this part will have non-linear components
# (e.g., for a log scale).
self.transScale = mtransforms.TransformWrapper(
mtransforms.IdentityTransform())
# An affine transformation on the data, generally to limit the
# range of the axes
self.transLimits = mtransforms.BboxTransformFrom(
mtransforms.TransformedBbox(self.viewLim, self.transScale))
# The parentheses are important for efficiency here -- they
# group the last two (which are usually affines) separately
# from the first (which, with log-scaling can be non-affine).
self.transData = self.transScale + (self.transLimits + self.transAxes)
self._xaxis_transform = mtransforms.blended_transform_factory(
self.transData, self.transAxes)
self._yaxis_transform = mtransforms.blended_transform_factory(
self.transAxes, self.transData)