本文整理汇总了Python中matplotlib.axes方法的典型用法代码示例。如果您正苦于以下问题:Python matplotlib.axes方法的具体用法?Python matplotlib.axes怎么用?Python matplotlib.axes使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类matplotlib
的用法示例。
在下文中一共展示了matplotlib.axes方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _RLClickDispatcher
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axes [as 别名]
def _RLClickDispatcher(event, sys, fig, ax_rlocus, plotstr, sisotool=False,
bode_plot_params=None, tvect=None):
"""Rootlocus plot click dispatcher"""
# Zoom is handled by specialized callback above, only do gain plot
if event.inaxes == ax_rlocus.axes and \
plt.get_current_fig_manager().toolbar.mode not in \
{'zoom rect', 'pan/zoom'}:
# if a point is clicked on the rootlocus plot visually emphasize it
K = _RLFeedbackClicksPoint(event, sys, fig, ax_rlocus, sisotool)
if sisotool and K is not None:
_SisotoolUpdate(sys, fig, K, bode_plot_params, tvect)
# Update the canvas
fig.canvas.draw()
示例2: plot_filled_polygons
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axes [as 别名]
def plot_filled_polygons(self,polygons, facecolour='green', edgecolour='black', linewidth=1, alpha=0.5):
"""
This function plots a series of shapely polygons but fills them in
Args:
ax_list: list of axes
polygons: list of shapely polygons
Author: FJC
"""
from shapely.geometry import Polygon
from descartes import PolygonPatch
from matplotlib.collections import PatchCollection
print('Plotting the polygons...')
#patches = []
for key, poly in polygons.items():
this_patch = PolygonPatch(poly, fc=facecolour, ec=edgecolour, alpha=alpha)
self.ax_list[0].add_patch(this_patch)
示例3: cla
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axes [as 别名]
def cla(self):
Axes.cla(self)
self.set_longitude_grid(30)
self.set_latitude_grid(15)
self.set_longitude_grid_ends(75)
self.xaxis.set_minor_locator(NullLocator())
self.yaxis.set_minor_locator(NullLocator())
self.xaxis.set_ticks_position('none')
self.yaxis.set_ticks_position('none')
self.yaxis.set_tick_params(label1On=True)
# Why do we need to turn on yaxis tick labels, but
# xaxis tick labels are already on?
self.grid(rcParams['axes.grid'])
Axes.set_xlim(self, -np.pi, np.pi)
Axes.set_ylim(self, -np.pi / 2.0, np.pi / 2.0)
示例4: gca
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axes [as 别名]
def gca(**kwargs):
"""
Return the current axis instance. This can be used to control
axis properties either using set or the
:class:`~matplotlib.axes.Axes` methods, for example, setting the
xaxis range::
plot(t,s)
set(gca(), 'xlim', [0,10])
or::
plot(t,s)
a = gca()
a.set_xlim([0,10])
"""
ax = gcf().gca(**kwargs)
return ax
# More ways of creating axes:
示例5: twinx
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axes [as 别名]
def twinx(ax=None):
"""
Make a second axes that shares the *x*-axis. The new axes will
overlay *ax* (or the current axes if *ax* is *None*). The ticks
for *ax2* will be placed on the right, and the *ax2* instance is
returned.
.. seealso::
:file:`examples/api_examples/two_scales.py`
For an example
"""
if ax is None:
ax=gca()
ax1 = ax.twinx()
draw_if_interactive()
return ax1
示例6: clim
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axes [as 别名]
def clim(vmin=None, vmax=None):
"""
Set the color limits of the current image.
To apply clim to all axes images do::
clim(0, 0.5)
If either *vmin* or *vmax* is None, the image min/max respectively
will be used for color scaling.
If you want to set the clim of multiple images,
use, for example::
for im in gca().get_images():
im.set_clim(0, 0.05)
"""
im = gci()
if im is None:
raise RuntimeError('You must first define an image, eg with imshow')
im.set_clim(vmin, vmax)
draw_if_interactive()
示例7: test_polar_wrap
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axes [as 别名]
def test_polar_wrap():
D2R = np.pi / 180.0
fig = plt.figure()
plt.subplot(111, polar=True)
plt.polar([179*D2R, -179*D2R], [0.2, 0.1], "b.-")
plt.polar([179*D2R, 181*D2R], [0.2, 0.1], "g.-")
plt.rgrids([0.05, 0.1, 0.15, 0.2, 0.25, 0.3])
assert len(fig.axes) == 1, 'More than one polar axes created.'
fig = plt.figure()
plt.subplot(111, polar=True)
plt.polar([2*D2R, -2*D2R], [0.2, 0.1], "b.-")
plt.polar([2*D2R, 358*D2R], [0.2, 0.1], "g.-")
plt.polar([358*D2R, 2*D2R], [0.2, 0.1], "r.-")
plt.rgrids([0.05, 0.1, 0.15, 0.2, 0.25, 0.3])
示例8: make_base_image
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axes [as 别名]
def make_base_image(self,ax_list):
"""
This function creates the base image. It creates the axis for the base image,
further drapes and point data are placed upon this image.
Args:
ax_list: A list of axes, we append the base raster to the [0] element
of the axis
Author: DAV and SMM
"""
# We need to initiate with a figure
#self.ax = self.fig.add_axes([0.1,0.1,0.7,0.7])
print("This colourmap is: "+ self._RasterList[0]._colourmap)
im = self.ax_list[0].imshow(self._RasterList[0]._RasterArray, self._RasterList[0]._colourmap, extent = self._RasterList[0].extents, interpolation="nearest", alpha = self._RasterList[0]._alpha)
# This affects all axes because we set share_all = True.
#ax.set_xlim(self._xmin,self._xmax)
#ax.set_ylim(self._ymin,self._ymax)
self.ax_list[0] = self.add_ticks_to_axis(self.ax_list[0])
self._drape_list.append(im)
print("The number of axes are: "+str(len(self._drape_list)))
print(self.ax_list[0])
return self.ax_list
示例9: add_drape_image
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axes [as 别名]
def add_drape_image(self,RasterName,Directory,colourmap = "gray",
alpha=0.5,
show_colourbar = False,
colorbarlabel = "Colourbar", discrete_cmap=False, n_colours=10,
norm = "None",
colour_min_max = [],
modify_raster_values=False,
old_values=[], new_values=[], cbar_type=float,
NFF_opti = False, custom_min_max = [], zorder=1):
"""
This function adds a drape over the base raster.
Args:
RasterName (string): The name of the raster (no directory, but need extension)
Directory (string): directory of the data
colourmap (string or colourmap): The colourmap. Can be a strong for default colourmaps
alpha (float): The transparency of the drape (1 is opaque, 0 totally transparent)
show_colourbar (bool): True to show colourbar
colourbarlabel (string): The label of the colourbar
discrete_cmap (bool): If true, make discrete values for colours, otherwise a gradient.
n_colours (int): number of colours in discrete colourbar
norm (string): Normalisation of colourbar. I don't understand this so don't change
colour_min_max( list of int/float): if it contains two elements, map the colourbar between these two values.
modify_raster_values (bool): If true, it takes old_values in list and replaces them with new_values
old_values (list): A list of values to be replaced in raster. Useful for masking and renaming
new_values (list): A list of the new values. This probably should be done with a map: TODO
cbar_type (type): Sets the type of the colourbar (if you want int labels, set to int)
NFF_opti (bool): If true, uses the new file loading functions. It is faster but hasn't been completely tested.
custom_min_max (list of int/float): if it contains two elements, recast the raster to [min,max] values for display.
Author: SMM
"""
print("N axes are: "+str(len(self.ax_list)))
print(self.ax_list[0])
self.ax_list = self._add_drape_image(self.ax_list,RasterName,Directory,colourmap,alpha,
colorbarlabel,discrete_cmap,n_colours, norm,
colour_min_max,modify_raster_values,old_values,
new_values,cbar_type, NFF_opti, custom_min_max, zorder=zorder)
#print("Getting axis limits in drape function: ")
#print(self.ax_list[0].get_xlim())
示例10: add_point_colourbar
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axes [as 别名]
def add_point_colourbar(self,ax_list,sc,cmap = "cubehelix",colorbarlabel = "Colourbar",
discrete=False, n_colours=10, cbar_type=float):
"""
This adds a colourbar for any points that are on the DEM.
Args:
ax_list: The list of axes objects. Assumes colourbar is in axis_list[-1]
sc: The scatterplot object. Generated by plt.scatter
cmap (string or colourmap): The colourmap.
colorbarlabel (string): The label of the colourbar
Author: SMM
"""
fig = matplotlib.pyplot.gcf()
ax_list.append(fig.add_axes([0.1,0.8,0.2,0.5]))
cbar = plt.colorbar(sc,cmap=cmap, orientation=self.colourbar_orientation,cax=ax_list[-1])
if self.colourbar_location == 'top':
ax_list[-1].set_xlabel(colorbarlabel, fontname='Liberation Sans',labelpad=5)
elif self.colourbar_location == 'bottom':
ax_list[-1].set_xlabel(colorbarlabel, fontname='Liberation Sans',labelpad=5)
elif self.colourbar_location == 'left':
ax_list[-1].set_ylabel(colorbarlabel, fontname='Liberation Sans',labelpad=-75,rotation=90)
elif self.colourbar_location == 'right':
ax_list[-1].set_ylabel(colorbarlabel, fontname='Liberation Sans',labelpad=10,rotation=270)
return ax_list
示例11: update
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axes [as 别名]
def update(self, **kwargs):
"""
Update the current values. If any kwarg is None, default to
the current value, if set, otherwise to rc.
"""
for k, v in kwargs.iteritems():
if k in self._AllowedKeys:
setattr(self, k, v)
else:
raise AttributeError("%s is unknown keyword" % (k,))
from matplotlib import _pylab_helpers
from matplotlib.axes import SubplotBase
for figmanager in _pylab_helpers.Gcf.figs.itervalues():
for ax in figmanager.canvas.figure.axes:
# copied from Figure.subplots_adjust
if not isinstance(ax, SubplotBase):
# Check if sharing a subplots axis
if ax._sharex is not None and isinstance(ax._sharex, SubplotBase):
if ax._sharex.get_subplotspec().get_gridspec() == self:
ax._sharex.update_params()
ax.set_position(ax._sharex.figbox)
elif ax._sharey is not None and isinstance(ax._sharey,SubplotBase):
if ax._sharey.get_subplotspec().get_gridspec() == self:
ax._sharey.update_params()
ax.set_position(ax._sharey.figbox)
else:
ss = ax.get_subplotspec().get_topmost_subplotspec()
if ss.get_gridspec() == self:
ax.update_params()
ax.set_position(ax.figbox)
示例12: tight_layout
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axes [as 别名]
def tight_layout(self, fig, renderer=None, pad=1.08, h_pad=None, w_pad=None, rect=None):
"""
Adjust subplot parameters to give specified padding.
Parameters:
pad : float
padding between the figure edge and the edges of subplots, as a fraction of the font-size.
h_pad, w_pad : float
padding (height/width) between edges of adjacent subplots.
Defaults to `pad_inches`.
rect : if rect is given, it is interpreted as a rectangle
(left, bottom, right, top) in the normalized figure
coordinate that the whole subplots area (including
labels) will fit into. Default is (0, 0, 1, 1).
"""
from tight_layout import (get_subplotspec_list,
get_tight_layout_figure,
get_renderer)
subplotspec_list = get_subplotspec_list(fig.axes, grid_spec=self)
if None in subplotspec_list:
warnings.warn("This figure includes Axes that are not "
"compatible with tight_layout, so its "
"results might be incorrect.")
if renderer is None:
renderer = get_renderer(fig)
kwargs = get_tight_layout_figure(fig, fig.axes, subplotspec_list,
renderer,
pad=pad, h_pad=h_pad, w_pad=w_pad,
rect=rect,
)
self.update(**kwargs)
示例13: set_xlim
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axes [as 别名]
def set_xlim(self, *args, **kwargs):
raise TypeError("It is not possible to change axes limits "
"for geographic projections. Please consider "
"using Basemap or Cartopy.")
示例14: can_zoom
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axes [as 别名]
def can_zoom(self):
"""
Return *True* if this axes supports the zoom box button functionality.
This axes object does not support interactive zoom box.
"""
return False
示例15: _init_axis
# 需要导入模块: import matplotlib [as 别名]
# 或者: from matplotlib import axes [as 别名]
def _init_axis(self):
"move this out of __init__ because non-separable axes don't use it"
self.xaxis = maxis.XAxis(self)
self.yaxis = maxis.YAxis(self)
# Calling polar_axes.xaxis.cla() or polar_axes.xaxis.cla()
# results in weird artifacts. Therefore we disable this for
# now.
# self.spines['polar'].register_axis(self.yaxis)
self._update_transScale()