本文整理汇总了Python中math.ldexp方法的典型用法代码示例。如果您正苦于以下问题:Python math.ldexp方法的具体用法?Python math.ldexp怎么用?Python math.ldexp使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类math
的用法示例。
在下文中一共展示了math.ldexp方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_roundtrip
# 需要导入模块: import math [as 别名]
# 或者: from math import ldexp [as 别名]
def test_roundtrip(self):
def roundtrip(x):
return fromHex(toHex(x))
for x in [NAN, INF, self.MAX, self.MIN, self.MIN-self.TINY, self.TINY, 0.0]:
self.identical(x, roundtrip(x))
self.identical(-x, roundtrip(-x))
# fromHex(toHex(x)) should exactly recover x, for any non-NaN float x.
import random
for i in xrange(10000):
e = random.randrange(-1200, 1200)
m = random.random()
s = random.choice([1.0, -1.0])
try:
x = s*ldexp(m, e)
except OverflowError:
pass
else:
self.identical(x, fromHex(toHex(x)))
示例2: test_strong_reference_implementation
# 需要导入模块: import math [as 别名]
# 或者: from math import ldexp [as 别名]
def test_strong_reference_implementation(self):
# Like test_referenceImplementation, but checks for exact bit-level
# equality. This should pass on any box where C double contains
# at least 53 bits of precision (the underlying algorithm suffers
# no rounding errors -- all results are exact).
from math import ldexp
expected = [0x0eab3258d2231fL,
0x1b89db315277a5L,
0x1db622a5518016L,
0x0b7f9af0d575bfL,
0x029e4c4db82240L,
0x04961892f5d673L,
0x02b291598e4589L,
0x11388382c15694L,
0x02dad977c9e1feL,
0x191d96d4d334c6L]
self.gen.seed(61731L + (24903L<<32) + (614L<<64) + (42143L<<96))
actual = self.randomlist(2000)[-10:]
for a, e in zip(actual, expected):
self.assertEqual(long(ldexp(a, 53)), e)
示例3: test_roundtrip
# 需要导入模块: import math [as 别名]
# 或者: from math import ldexp [as 别名]
def test_roundtrip(self):
def roundtrip(x):
return fromHex(toHex(x))
for x in [NAN, INF, self.MAX, self.MIN, self.MIN-self.TINY, self.TINY, 0.0]:
self.identical(x, roundtrip(x))
self.identical(-x, roundtrip(-x))
# fromHex(toHex(x)) should exactly recover x, for any non-NaN float x.
import random
for i in range(10000):
e = random.randrange(-1200, 1200)
m = random.random()
s = random.choice([1.0, -1.0])
try:
x = s*ldexp(m, e)
except OverflowError:
pass
else:
self.identical(x, fromHex(toHex(x)))
示例4: test_strong_reference_implementation
# 需要导入模块: import math [as 别名]
# 或者: from math import ldexp [as 别名]
def test_strong_reference_implementation(self):
# Like test_referenceImplementation, but checks for exact bit-level
# equality. This should pass on any box where C double contains
# at least 53 bits of precision (the underlying algorithm suffers
# no rounding errors -- all results are exact).
from math import ldexp
expected = [0x0eab3258d2231f,
0x1b89db315277a5,
0x1db622a5518016,
0x0b7f9af0d575bf,
0x029e4c4db82240,
0x04961892f5d673,
0x02b291598e4589,
0x11388382c15694,
0x02dad977c9e1fe,
0x191d96d4d334c6]
self.gen.seed(61731 + (24903<<32) + (614<<64) + (42143<<96))
actual = self.randomlist(2000)[-10:]
for a, e in zip(actual, expected):
self.assertEqual(int(ldexp(a, 53)), e)
示例5: _float_or_double
# 需要导入模块: import math [as 别名]
# 或者: from math import ldexp [as 别名]
def _float_or_double(self, x, nmbits, nebits, suffix, nanfmt):
nbits = nmbits + nebits + 1
assert nbits % 32 == 0
sbit, ebits, mbits = x >> (nbits - 1), (x >> nmbits) % (1 << nebits), x % (1 << nmbits)
if ebits == (1 << nebits) - 1:
result = 'NaN' if mbits else 'Infinity'
if self.roundtrip and mbits:
result += nanfmt.format(x)
elif ebits == 0 and mbits == 0:
result = '0.0'
else:
ebias = (1 << (nebits - 1)) - 1
exponent = ebits - ebias - nmbits
mantissa = mbits
if ebits > 0:
mantissa += 1 << nmbits
else:
exponent += 1
if self.roundtrip:
result = '0x{:X}p{}'.format(mantissa, exponent)
else:
result = repr(math.ldexp(mantissa, exponent))
return '+-'[sbit] + result + suffix
示例6: _zoomRatio
# 需要导入模块: import math [as 别名]
# 或者: from math import ldexp [as 别名]
def _zoomRatio(self, basePoint):
# type: (om.MPoint) -> float
"""Calculate zoom factor as distance from the current view's camera position."""
# FIXME: all views share this value from current one.
# camera distance
cameraPath = omui.M3dView.active3dView().getCamera()
camNode = om.MFnDependencyNode(cameraPath.node())
isOrtho = camNode.findPlug("orthographic", False)
camMat = cameraPath.inclusiveMatrix().homogenize()
camPos = om.MPoint(
camMat.getElement(3, 0),
camMat.getElement(3, 1),
camMat.getElement(3, 2),
)
if isOrtho.asBool():
orthoWidth = camNode.findPlug("orthographicWidth", False).asFloat()
return math.ldexp(orthoWidth, 3) * 0.01
else:
return basePoint.distanceTo(camPos) * 0.1
示例7: float_unpack
# 需要导入模块: import math [as 别名]
# 或者: from math import ldexp [as 别名]
def float_unpack(Q, size, le):
"""Convert a 32-bit or 64-bit integer created
by float_pack into a Python float."""
if size == 8:
MIN_EXP = -1021 # = sys.float_info.min_exp
MAX_EXP = 1024 # = sys.float_info.max_exp
MANT_DIG = 53 # = sys.float_info.mant_dig
BITS = 64
elif size == 4:
MIN_EXP = -125 # C's FLT_MIN_EXP
MAX_EXP = 128 # FLT_MAX_EXP
MANT_DIG = 24 # FLT_MANT_DIG
BITS = 32
else:
raise ValueError("invalid size value")
if Q >> BITS:
raise ValueError("input out of range")
# extract pieces
sign = Q >> BITS - 1
exp = (Q & ((1 << BITS - 1) - (1 << MANT_DIG - 1))) >> MANT_DIG - 1
mant = Q & ((1 << MANT_DIG - 1) - 1)
if exp == MAX_EXP - MIN_EXP + 2:
# nan or infinity
result = float('nan') if mant else float('inf')
elif exp == 0:
# subnormal or zero
result = math.ldexp(float(mant), MIN_EXP - MANT_DIG)
else:
# normal
mant += 1 << MANT_DIG - 1
result = math.ldexp(float(mant), exp + MIN_EXP - MANT_DIG - 1)
return -result if sign else result
示例8: get_value
# 需要导入模块: import math [as 别名]
# 或者: from math import ldexp [as 别名]
def get_value(self, level):
return math.ldexp(self.deriv(), -self.__dim * level)
示例9: _write_float
# 需要导入模块: import math [as 别名]
# 或者: from math import ldexp [as 别名]
def _write_float(f, x):
import math
if x < 0:
sign = 0x8000
x = x * -1
else:
sign = 0
if x == 0:
expon = 0
himant = 0
lomant = 0
else:
fmant, expon = math.frexp(x)
if expon > 16384 or fmant >= 1: # Infinity or NaN
expon = sign|0x7FFF
himant = 0
lomant = 0
else: # Finite
expon = expon + 16382
if expon < 0: # denormalized
fmant = math.ldexp(fmant, expon)
expon = 0
expon = expon | sign
fmant = math.ldexp(fmant, 32)
fsmant = math.floor(fmant)
himant = long(fsmant)
fmant = math.ldexp(fmant - fsmant, 32)
fsmant = math.floor(fmant)
lomant = long(fsmant)
_write_short(f, expon)
_write_long(f, himant)
_write_long(f, lomant)
示例10: _write_float
# 需要导入模块: import math [as 别名]
# 或者: from math import ldexp [as 别名]
def _write_float(f, x):
import math
if x < 0:
sign = 0x8000
x = x * -1
else:
sign = 0
if x == 0:
expon = 0
himant = 0
lomant = 0
else:
fmant, expon = math.frexp(x)
if expon > 16384 or fmant >= 1 or fmant != fmant: # Infinity or NaN
expon = sign|0x7FFF
himant = 0
lomant = 0
else: # Finite
expon = expon + 16382
if expon < 0: # denormalized
fmant = math.ldexp(fmant, expon)
expon = 0
expon = expon | sign
fmant = math.ldexp(fmant, 32)
fsmant = math.floor(fmant)
himant = long(fsmant)
fmant = math.ldexp(fmant - fsmant, 32)
fsmant = math.floor(fmant)
lomant = long(fsmant)
_write_ushort(f, expon)
_write_ulong(f, himant)
_write_ulong(f, lomant)
示例11: truediv
# 需要导入模块: import math [as 别名]
# 或者: from math import ldexp [as 别名]
def truediv(a, b):
"""Correctly-rounded true division for integers."""
negative = a^b < 0
a, b = abs(a), abs(b)
# exceptions: division by zero, overflow
if not b:
raise ZeroDivisionError("division by zero")
if a >= DBL_MIN_OVERFLOW * b:
raise OverflowError("int/int too large to represent as a float")
# find integer d satisfying 2**(d - 1) <= a/b < 2**d
d = a.bit_length() - b.bit_length()
if d >= 0 and a >= 2**d * b or d < 0 and a * 2**-d >= b:
d += 1
# compute 2**-exp * a / b for suitable exp
exp = max(d, DBL_MIN_EXP) - DBL_MANT_DIG
a, b = a << max(-exp, 0), b << max(exp, 0)
q, r = divmod(a, b)
# round-half-to-even: fractional part is r/b, which is > 0.5 iff
# 2*r > b, and == 0.5 iff 2*r == b.
if 2*r > b or 2*r == b and q % 2 == 1:
q += 1
result = math.ldexp(float(q), exp)
return -result if negative else result
示例12: test_ends
# 需要导入模块: import math [as 别名]
# 或者: from math import ldexp [as 别名]
def test_ends(self):
self.identical(self.MIN, ldexp(1.0, -1022))
self.identical(self.TINY, ldexp(1.0, -1074))
self.identical(self.EPS, ldexp(1.0, -52))
self.identical(self.MAX, 2.*(ldexp(1.0, 1023) - ldexp(1.0, 970)))
示例13: testLdexp
# 需要导入模块: import math [as 别名]
# 或者: from math import ldexp [as 别名]
def testLdexp(self):
self.assertRaises(TypeError, math.ldexp)
self.ftest('ldexp(0,1)', math.ldexp(0,1), 0)
self.ftest('ldexp(1,1)', math.ldexp(1,1), 2)
self.ftest('ldexp(1,-1)', math.ldexp(1,-1), 0.5)
self.ftest('ldexp(-1,1)', math.ldexp(-1,1), -2)
self.assertRaises(OverflowError, math.ldexp, 1., 1000000)
self.assertRaises(OverflowError, math.ldexp, -1., 1000000)
self.assertEqual(math.ldexp(1., -1000000), 0.)
self.assertEqual(math.ldexp(-1., -1000000), -0.)
self.assertEqual(math.ldexp(INF, 30), INF)
self.assertEqual(math.ldexp(NINF, -213), NINF)
self.assertTrue(math.isnan(math.ldexp(NAN, 0)))
# large second argument
for n in [10**5, 10L**5, 10**10, 10L**10, 10**20, 10**40]:
self.assertEqual(math.ldexp(INF, -n), INF)
self.assertEqual(math.ldexp(NINF, -n), NINF)
self.assertEqual(math.ldexp(1., -n), 0.)
self.assertEqual(math.ldexp(-1., -n), -0.)
self.assertEqual(math.ldexp(0., -n), 0.)
self.assertEqual(math.ldexp(-0., -n), -0.)
self.assertTrue(math.isnan(math.ldexp(NAN, -n)))
self.assertRaises(OverflowError, math.ldexp, 1., n)
self.assertRaises(OverflowError, math.ldexp, -1., n)
self.assertEqual(math.ldexp(0., n), 0.)
self.assertEqual(math.ldexp(-0., n), -0.)
self.assertEqual(math.ldexp(INF, n), INF)
self.assertEqual(math.ldexp(NINF, n), NINF)
self.assertTrue(math.isnan(math.ldexp(NAN, n)))