本文整理汇总了Python中math.gcd方法的典型用法代码示例。如果您正苦于以下问题:Python math.gcd方法的具体用法?Python math.gcd怎么用?Python math.gcd使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类math
的用法示例。
在下文中一共展示了math.gcd方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: comp_sym
# 需要导入模块: import math [as 别名]
# 或者: from math import gcd [as 别名]
def comp_sym(self):
"""Compute the symmetry factor of the machine
Parameters
----------
self : Machine
A Machine object
Returns
-------
sym : int
Number of symmetries of the Machine
is_antisym : bool
True if an anti-symmetry is possible after the symmetries
"""
sym_s, is_antisym_s = self.stator.comp_sym()
sym_r, is_antisym_r = self.rotor.comp_sym()
return gcd(sym_s, sym_r), is_antisym_s and is_antisym_r
示例2: generate_keypair
# 需要导入模块: import math [as 别名]
# 或者: from math import gcd [as 别名]
def generate_keypair(key_size=1024, key_round=5, encode_precision=2 ** 100):
key_size_array = np.linspace(start=int(key_size / 2), stop=key_size, num=key_round)
key_size_array = np.floor(key_size_array).astype(np.int64)
n_array = [0 for _ in range(key_round)]
a_array = [0 for _ in range(key_round)]
i = 0
for key_size in key_size_array:
n = random.SystemRandom().getrandbits(key_size)
a = 0
while True:
a_ratio = random.SystemRandom().random()
a_size = int(key_size * a_ratio)
if a_size is 0:
continue
a = random.SystemRandom().getrandbits(a_size)
if math.gcd(n, a) == 1:
break
n_array[i] = n
a_array[i] = a
i = i + 1
return IterativeAffineCipherKey(a_array, n_array, encode_precision)
示例3: testMisc
# 需要导入模块: import math [as 别名]
# 或者: from math import gcd [as 别名]
def testMisc(self):
# fractions.gcd() is deprecated
with self.assertWarnsRegex(DeprecationWarning, r'fractions\.gcd'):
gcd(1, 1)
with warnings.catch_warnings():
warnings.filterwarnings('ignore', r'fractions\.gcd',
DeprecationWarning)
self.assertEqual(0, gcd(0, 0))
self.assertEqual(1, gcd(1, 0))
self.assertEqual(-1, gcd(-1, 0))
self.assertEqual(1, gcd(0, 1))
self.assertEqual(-1, gcd(0, -1))
self.assertEqual(1, gcd(7, 1))
self.assertEqual(-1, gcd(7, -1))
self.assertEqual(1, gcd(-23, 15))
self.assertEqual(12, gcd(120, 84))
self.assertEqual(-12, gcd(84, -120))
self.assertEqual(gcd(120.0, 84), 12.0)
self.assertEqual(gcd(120, 84.0), 12.0)
self.assertEqual(gcd(F(120), F(84)), F(12))
self.assertEqual(gcd(F(120, 77), F(84, 55)), F(12, 385))
示例4: generate_indices
# 需要导入模块: import math [as 别名]
# 或者: from math import gcd [as 别名]
def generate_indices(max_index):
"""Return an array of miller indices enumerated up to values
plus or minus some maximum. Filters out lists with greatest
common divisors greater than one. Only positive values need to
be considered for the first index.
Parameters
----------
max_index : int
Maximum number that will be considered for a given surface.
Returns
-------
unique_index : ndarray (n, 3)
Unique miller indices
"""
grid = np.mgrid[max_index:-1:-1,
max_index:-max_index-1:-1,
max_index:-max_index-1:-1]
index = grid.reshape(3, -1)
gcd = utils.list_gcd(index)
unique_index = index.T[np.where(gcd == 1)]
return unique_index
示例5: power
# 需要导入模块: import math [as 别名]
# 或者: from math import gcd [as 别名]
def power(M, k):
""" fast exponentiation M^k """
P = [1, 0,
0, 1]
if k == 0:
return P
if k == 1:
return M
while k != 0:
if k % 2 == 1:
P = multm(P, M)
M = multm(M, M)
k //= 2
return P
# on utilise la propriété suivante:
# gcd(F(a), F(b)) = F(gcd(a, b))
# calcul du gcd(aᵢ)
示例6: find_primitive_root
# 需要导入模块: import math [as 别名]
# 或者: from math import gcd [as 别名]
def find_primitive_root(n):
if (n == 1):
return [0]
""" Exception Handeling :
0 is the only primitive root of 1 """
else:
phi = euler_totient(n)
p_root_list = []
""" It will return every primitive roots of n. """
for i in range (1, n):
if (math.gcd(i, n) != 1):
continue
""" To have order, a and n must be
relative prime with each other. """
else:
order = find_order(i, n)
if (order == phi):
p_root_list.append(i)
else:
continue
return p_root_list
示例7: naive_order_finder
# 需要导入模块: import math [as 别名]
# 或者: from math import gcd [as 别名]
def naive_order_finder(x: int, n: int) -> Optional[int]:
"""Computes smallest positive r such that x**r mod n == 1.
Args:
x: integer whose order is to be computed, must be greater than one
and belong to the multiplicative group of integers modulo n (which
consists of positive integers relatively prime to n),
n: modulus of the multiplicative group.
Returns:
Smallest positive integer r such that x**r == 1 mod n.
Always succeeds (and hence never returns None).
Raises:
ValueError when x is 1 or not an element of the multiplicative
group of integers modulo n.
"""
if x < 2 or n <= x or math.gcd(x, n) > 1:
raise ValueError(f'Invalid x={x} for modulus n={n}.')
r, y = 1, x
while y != 1:
y = (x * y) % n
r += 1
return r
示例8: _lcm
# 需要导入模块: import math [as 别名]
# 或者: from math import gcd [as 别名]
def _lcm(a: int, b: int) -> int:
return abs(a * b) // math.gcd(a, b)
示例9: lcm
# 需要导入模块: import math [as 别名]
# 或者: from math import gcd [as 别名]
def lcm(a, b):
"""Calculate the least common multiple of a and b."""
return abs(a * b) // gcd(a, b)
示例10: gcd
# 需要导入模块: import math [as 别名]
# 或者: from math import gcd [as 别名]
def gcd(*values: int) -> int:
"""
Return the greatest common divisor of a series of ints
:param values: The values of which to compute the GCD
:return: The GCD
"""
assert len(values) > 0
# 3.5 moves fractions.gcd to math.gcd
if sys.version_info.major == 3 and sys.version_info.minor < 5:
import fractions
return reduce(fractions.gcd, values)
else:
return reduce(math.gcd, values)
示例11: lcm
# 需要导入模块: import math [as 别名]
# 或者: from math import gcd [as 别名]
def lcm(*values: int) -> int:
"""
Return the least common multiple of a series of ints
:param values: The values of which to compute the LCM
:return: The LCM
"""
assert len(values) > 0
# 3.5 moves fractions.gcd to math.gcd
if sys.version_info.major == 3 and sys.version_info.minor < 5:
import fractions
return reduce(lambda x, y: (x * y) // fractions.gcd(x, y), values)
else:
return reduce(lambda x, y: (x * y) // math.gcd(x, y), values)
示例12: as_integer_ratio
# 需要导入模块: import math [as 别名]
# 或者: from math import gcd [as 别名]
def as_integer_ratio(self):
sign = -1 if self.signbit else 1
e16 = self.exp16
if e16 >= 0:
numerator = self.int_mantissa * EXPONENT_BASE**self.exp16
denominator = _L24
else:
numerator = self.int_mantissa
denominator = _L24 * EXPONENT_BASE**abs(self.exp16)
divisor = gcd(numerator, denominator)
reduced_numerator = sign * numerator // divisor
reduced_denominator = denominator // divisor
return reduced_numerator, reduced_denominator
示例13: __init__
# 需要导入模块: import math [as 别名]
# 或者: from math import gcd [as 别名]
def __init__(self, target, rand=True, state=None):
# see https://fr.wikipedia.org/wiki/Générateur_congruentiel_linéaire
self.target = target
self.nextcount = 0
self.lcg_m = target.targetscount
if state is not None:
self.previous = state[0]
self.lcg_c = state[1]
self.lcg_a = state[2]
self.nextcount = state[3]
elif rand and target.targetscount > 1:
# X_{-1}
self.previous = random.randint(0, self.lcg_m - 1)
# GCD(c, m) == 1
self.lcg_c = random.randint(1, self.lcg_m - 1)
# pylint: disable=deprecated-method
while gcd(self.lcg_c, self.lcg_m) != 1:
self.lcg_c = random.randint(1, self.lcg_m - 1)
# a - 1 is divisible by all prime factors of m
mfactors = reduce(mul, set(mathutils.factors(self.lcg_m)))
# a - 1 is a multiple of 4 if m is a multiple of 4.
if self.lcg_m % 4 == 0:
mfactors *= 2
self.lcg_a = mfactors + 1
else:
self.previous = self.lcg_m - 1
self.lcg_a = 1
self.lcg_c = 1
示例14: __init__
# 需要导入模块: import math [as 别名]
# 或者: from math import gcd [as 别名]
def __init__(self, base):
self.size = len(base)
for i in range(self.size):
if base[i] == 0:
raise ValueError("rns_base is invalid")
# The base must be coprime
for j in base[:i]:
if gcd(base[i], j) != 1:
raise ValueError("rns_base is invalid")
self.base = base
self.base_prod = None
self.punctured_prod_list = [0] * self.size
self.inv_punctured_prod_mod_base_list = [0] * self.size
if self.size > 1:
# Compute punctured product
for i in range(self.size):
self.punctured_prod_list[i] = multiply_many_except(self.base, self.size, i)
# Compute the full product
self.base_prod = self.punctured_prod_list[0] * self.base[0]
# Compute inverses of punctured products mod primes
for i in range(self.size):
self.inv_punctured_prod_mod_base_list[i] = (
self.punctured_prod_list[i] % self.base[i]
)
self.inv_punctured_prod_mod_base_list[i] = invert_mod(
self.inv_punctured_prod_mod_base_list[i], self.base[i]
)
else:
self.base_prod = self.base[0]
self.punctured_prod_list[0] = 1
self.inv_punctured_prod_mod_base_list[0] = 1
示例15: _nfold
# 需要导入模块: import math [as 别名]
# 或者: from math import gcd [as 别名]
def _nfold(str, nbytes):
# Convert str to a string of length nbytes using the RFC 3961 nfold
# operation.
# Rotate the bytes in str to the right by nbits bits.
def rotate_right(str, nbits):
num = int.from_bytes(str, byteorder ='big', signed = False)
size = len(str)*8
nbits %= size
body = num >> nbits
remains = (num << (size - nbits)) - (body << size)
return (body + remains).to_bytes(len(str), byteorder ='big', signed = False)
# Add equal-length strings together with end-around carry.
def add_ones_complement(str1, str2):
n = len(str1)
v = []
for i in range(0,len(str1), 1):
t = str1[i] + str2[i]
v.append(t)
#v = [ord(a) + ord(b) for a, b in zip(str1, str2)]
# Propagate carry bits to the left until there aren't any left.
while any(x & ~0xff for x in v):
v = [(v[i-n+1]>>8) + (v[i]&0xff) for i in range(n)]
return b''.join(x.to_bytes(1, byteorder = 'big', signed = False) for x in v)
# Concatenate copies of str to produce the least common multiple
# of len(str) and nbytes, rotating each copy of str to the right
# by 13 bits times its list position. Decompose the concatenation
# into slices of length nbytes, and add them together as
# big-endian ones' complement integers.
slen = len(str)
lcm = int(nbytes * slen / gcd(nbytes, slen))
bigstr = b''.join((rotate_right(str, 13 * i) for i in range(int(lcm / slen))))
slices = (bigstr[p:p+nbytes] for p in range(0, lcm, nbytes))
return functools.reduce(add_ones_complement, slices)