本文整理汇总了Python中math.atan方法的典型用法代码示例。如果您正苦于以下问题:Python math.atan方法的具体用法?Python math.atan怎么用?Python math.atan使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类math
的用法示例。
在下文中一共展示了math.atan方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: opposing_angle
# 需要导入模块: import math [as 别名]
# 或者: from math import atan [as 别名]
def opposing_angle(pos1, pos2):
'''
Returns the angle of the other_agent relative to the agent
'''
x_dif = pos2[0] - pos1[0]
y_dif = pos2[1] - pos1[1]
if (x_dif != 0 and y_dif != 0):
if (x_dif > 0):
new_angle = 180 + degrees(atan(y_dif / x_dif))
else:
new_angle = degrees(atan(y_dif / x_dif))
elif (y_dif != 0):
if(y_dif > 0):
new_angle = 270
else:
new_angle = 90
else:
if(x_dif > 0):
new_angle = 180
else:
new_angle = 0
return new_angle
示例2: getRayFromTo
# 需要导入模块: import math [as 别名]
# 或者: from math import atan [as 别名]
def getRayFromTo(mouseX,mouseY):
width, height, viewMat, projMat, cameraUp, camForward, horizon,vertical, _,_,dist, camTarget = p.getDebugVisualizerCamera()
camPos = [camTarget[0] - dist*camForward[0],camTarget[1] - dist*camForward[1],camTarget[2] - dist*camForward[2]]
farPlane = 10000
rayForward = [(camTarget[0]-camPos[0]),(camTarget[1]-camPos[1]),(camTarget[2]-camPos[2])]
lenFwd = math.sqrt(rayForward[0]*rayForward[0]+rayForward[1]*rayForward[1]+rayForward[2]*rayForward[2])
invLen = farPlane*1./lenFwd
rayForward = [invLen*rayForward[0],invLen*rayForward[1],invLen*rayForward[2]]
rayFrom = camPos
oneOverWidth = float(1)/float(width)
oneOverHeight = float(1)/float(height)
dHor = [horizon[0] * oneOverWidth,horizon[1] * oneOverWidth,horizon[2] * oneOverWidth]
dVer = [vertical[0] * oneOverHeight,vertical[1] * oneOverHeight,vertical[2] * oneOverHeight]
rayToCenter=[rayFrom[0]+rayForward[0],rayFrom[1]+rayForward[1],rayFrom[2]+rayForward[2]]
ortho=[- 0.5 * horizon[0] + 0.5 * vertical[0]+float(mouseX)*dHor[0]-float(mouseY)*dVer[0],
- 0.5 * horizon[1] + 0.5 * vertical[1]+float(mouseX)*dHor[1]-float(mouseY)*dVer[1],
- 0.5 * horizon[2] + 0.5 * vertical[2]+float(mouseX)*dHor[2]-float(mouseY)*dVer[2]]
rayTo = [rayFrom[0]+rayForward[0] +ortho[0],
rayFrom[1]+rayForward[1] +ortho[1],
rayFrom[2]+rayForward[2] +ortho[2]]
lenOrtho = math.sqrt(ortho[0]*ortho[0]+ortho[1]*ortho[1]+ortho[2]*ortho[2])
alpha = math.atan(lenOrtho/farPlane)
return rayFrom,rayTo, alpha
示例3: c2s
# 需要导入模块: import math [as 别名]
# 或者: from math import atan [as 别名]
def c2s(self):
R = self.dist(point(0, 0, 0))
lg = math.atan(self.y / self.x)
lat = acos(self.z / R)
return (lg, lat, R)
# ~ def transform(self,p1,p2):
# ~ if isinstance(p2,point):
# ~ v=vec(p1,p2)
# ~ rot=v.angle()
# ~ return self.transform(p1,rot)
# ~ else:
# ~ temp=self-p1
# ~ rot=p2
# ~ px=math.cos(rot)*temp.x+math.sin(rot)*temp.y
# ~ py=-math.sin(rot)*temp.x+math.cos(rot)*temp.y
# ~ return point(px,py)
示例4: _view_update_camera
# 需要导入模块: import math [as 别名]
# 或者: from math import atan [as 别名]
def _view_update_camera(aspect, v3d, rv3d, camera):
zoom = rv3d.view_camera_zoom
z = ((_SQRT2 + zoom / 50) ** 2) / 4
cdata = v3d.camera.data
fit = cdata.sensor_fit
if fit == 'VERTICAL':
sensor = cdata.sensor_height
_sensor = (16 * sensor / 9) / z # sensor / (18 / 32)
z *= 9 / 16 # 18 / 32
else:
sensor = cdata.sensor_width
_sensor = sensor / z
lens = cdata.lens
camera['fov'] = ('FLOAT', math.degrees(2 * math.atan(_sensor / (2 * lens))))
offset_x, offset_y = rv3d.view_camera_offset
shift_x = cdata.shift_x
shift_y = cdata.shift_y
shx = 2 * z * (2 * offset_x + shift_x)
shy = 2 * z * (2 * offset_y + shift_y * aspect)
camera['screen_window_min'] = ('VECTOR2', (-1, -1))
camera['screen_window_max'] = ('VECTOR2', (1, 1))
return (zoom, fit, sensor, lens, offset_x, offset_y, shift_x, shift_y)
示例5: pixel_to_lonlat
# 需要导入模块: import math [as 别名]
# 或者: from math import atan [as 别名]
def pixel_to_lonlat(self, px, zoom):
"Converts a pixel to a longitude, latitude pair at the given zoom level."
if len(px) != 2:
raise TypeError('Pixel should be a sequence of two elements.')
# Getting the number of pixels for the given zoom level.
npix = self._npix[zoom]
# Calculating the longitude value, using the degrees per pixel.
lon = (px[0] - npix) / self._degpp[zoom]
# Calculating the latitude value.
lat = RTOD * (2 * atan(exp((px[1] - npix) / (-1.0 * self._radpp[zoom]))) - 0.5 * pi)
# Returning the longitude, latitude coordinate pair.
return (lon, lat)
示例6: _thick_line
# 需要导入模块: import math [as 别名]
# 或者: from math import atan [as 别名]
def _thick_line(self, start_point, end_point, fill, thickness):
"""Draws a line using polygons to give it a thickness"""
if thickness == 1:
self.line((start_point, end_point), fill=fill)
else:
# Angle of the line
if end_point[0] == start_point[0]:
# Catch a division by zero error
a = math.pi / 2
else:
a = math.atan((end_point[1] - start_point[1]) / (end_point[0] - start_point[0]))
sin = math.sin(a)
cos = math.cos(a)
xdelta = sin * thickness / 2.0
ydelta = cos * thickness / 2.0
points = ((start_point[0] - xdelta, start_point[1] + ydelta),
(start_point[0] + xdelta, start_point[1] - ydelta),
(end_point[0] + xdelta, end_point[1] - ydelta),
(end_point[0] - xdelta, end_point[1] + ydelta))
self.polygon(points, fill=fill)
示例7: _location_to_gps
# 需要导入模块: import math [as 别名]
# 或者: from math import atan [as 别名]
def _location_to_gps(lat_ref, lon_ref, location):
"""
Convert from world coordinates to GPS coordinates
:param lat_ref: latitude reference for the current map
:param lon_ref: longitude reference for the current map
:param location: location to translate
:return: dictionary with lat, lon and height
"""
EARTH_RADIUS_EQUA = 6378137.0 # pylint: disable=invalid-name
scale = math.cos(lat_ref * math.pi / 180.0)
mx = scale * lon_ref * math.pi * EARTH_RADIUS_EQUA / 180.0
my = scale * EARTH_RADIUS_EQUA * math.log(math.tan((90.0 + lat_ref) * math.pi / 360.0))
mx += location.x
my -= location.y
lon = mx * 180.0 / (math.pi * EARTH_RADIUS_EQUA * scale)
lat = 360.0 * math.atan(math.exp(my / (EARTH_RADIUS_EQUA * scale))) / math.pi - 90.0
z = location.z
return {'lat': lat, 'lon': lon, 'z': z}
示例8: trig
# 需要导入模块: import math [as 别名]
# 或者: from math import atan [as 别名]
def trig(a, b=' '):
if is_num(a) and isinstance(b, int):
funcs = [math.sin, math.cos, math.tan,
math.asin, math.acos, math.atan,
math.degrees, math.radians,
math.sinh, math.cosh, math.tanh,
math.asinh, math.acosh, math.atanh]
return funcs[b](a)
if is_lst(a):
width = max(len(row) for row in a)
padded_matrix = [list(row) + (width - len(row)) * [b] for row in a]
transpose = list(zip(*padded_matrix))
if all(isinstance(row, str) for row in a) and isinstance(b, str):
normalizer = ''.join
else:
normalizer = list
norm_trans = [normalizer(padded_row) for padded_row in transpose]
return norm_trans
return unknown_types(trig, ".t", a, b)
示例9: turn_xyz_into_llh
# 需要导入模块: import math [as 别名]
# 或者: from math import atan [as 别名]
def turn_xyz_into_llh(x,y,z,system):
"""Convert 3D Cartesian x,y,z into Lat, Long and Height
See http://www.ordnancesurvey.co.uk/gps/docs/convertingcoordinates3D.pdf"""
a = abe_values[system][0]
b = abe_values[system][1]
e2 = abe_values[system][2]
p = math.sqrt(x*x + y*y)
long = math.atan(y/x)
lat_init = math.atan( z / (p * (1.0 - e2)) )
v = a / math.sqrt( 1.0 - e2 * (math.sin(lat_init) * math.sin(lat_init)) )
lat = math.atan( (z + e2*v*math.sin(lat_init)) / p )
height = (p / math.cos(lat)) - v # Ignore if a bit out
# Turn from radians back into degrees
long = long / 2 / math.pi * 360
lat = lat / 2 / math.pi * 360
return [lat,long,height]
示例10: ecef_to_llh
# 需要导入模块: import math [as 别名]
# 或者: from math import atan [as 别名]
def ecef_to_llh(ecef_km):
# WGS-84 ellipsoid parameters */
a = 6378.1370
b = 6356.752314
p = sqrt(ecef_km[0] ** 2 + ecef_km[1] ** 2)
thet = atan(ecef_km[2] * a / (p * b))
esq = 1.0 - (b / a) ** 2
epsq = (a / b) ** 2 - 1.0
lat = atan((ecef_km[2] + epsq * b * sin(thet) ** 3) / (p - esq * a * cos(thet) ** 3))
lon = atan2(ecef_km[1], ecef_km[0])
n = a * a / sqrt(a * a * cos(lat) ** 2 + b ** 2 * sin(lat) ** 2)
h = p / cos(lat) - n
lat = degrees(lat)
lon = degrees(lon)
return lat, lon, h
示例11: ta_to_E
# 需要导入模块: import math [as 别名]
# 或者: from math import atan [as 别名]
def ta_to_E(ta, ecc):
"""Eccentric anomaly from true anomaly.
Parameters
----------
ta : float
True anomaly (rad).
ecc : float
Eccentricity.
Returns
-------
E : float
Eccentric anomaly.
"""
E = 2 * atan(sqrt((1 - ecc) / (1 + ecc)) * tan(ta / 2))
return E
示例12: E_to_ta
# 需要导入模块: import math [as 别名]
# 或者: from math import atan [as 别名]
def E_to_ta(E, ecc):
"""True anomaly from eccentric anomaly.
Parameters
----------
E : float
Eccentric anomaly (rad).
ecc : float
Eccentricity.
Returns
-------
ta : float
True anomaly (rad).
"""
ta = 2 * atan(sqrt((1 + ecc) / (1 - ecc)) * tan(E / 2))
return ta
示例13: angleBetweenChars
# 需要导入模块: import math [as 别名]
# 或者: from math import atan [as 别名]
def angleBetweenChars(firstChar, secondChar):
fltAdj = float(abs(firstChar.intCenterX - secondChar.intCenterX))
fltOpp = float(abs(firstChar.intCenterY - secondChar.intCenterY))
if fltAdj != 0.0: # check to make sure we do not divide by zero if the center X positions are equal, float division by zero will cause a crash in Python
fltAngleInRad = math.atan(fltOpp / fltAdj) # if adjacent is not zero, calculate angle
else:
fltAngleInRad = 1.5708 # if adjacent is zero, use this as the angle, this is to be consistent with the C++ version of this program
# end if
fltAngleInDeg = fltAngleInRad * (180.0 / math.pi) # calculate angle in degrees
return fltAngleInDeg
# end function
###################################################################################################
# if we have two chars overlapping or to close to each other to possibly be separate chars, remove the inner (smaller) char,
# this is to prevent including the same char twice if two contours are found for the same char,
# for example for the letter 'O' both the inner ring and the outer ring may be found as contours, but we should only include the char once
示例14: angle
# 需要导入模块: import math [as 别名]
# 或者: from math import atan [as 别名]
def angle(center, point):
"""Return the angle (radian) of point from center of the radian circle.
------p
| /
| /
c|a/
"""
dx = point.x - center.x
dy = point.y - center.y
if dx == 0:
if dy < 0:
return pi * 3 / 2
return pi / 2
if dy == 0:
if dx < 0:
return pi
return 0
if dx < 0:
return pi + atan(dy / dx)
if dy < 0:
return 2 * pi + atan(dy / dx)
return atan(dy / dx)
示例15: tunnel
# 需要导入模块: import math [as 别名]
# 或者: from math import atan [as 别名]
def tunnel(x, y, step):
speed = step / 100.0
x -= (u_width / 2)
y -= (u_height / 2)
xo = math.sin(step / 27.0) * 2
yo = math.cos(step / 18.0) * 2
x += xo
y += yo
if y == 0:
if x < 0:
angle = -(math.pi / 2)
else:
angle = (math.pi / 2)
else:
angle = math.atan(x / y)
if y > 0:
angle += math.pi
angle /= 2 * math.pi # convert angle to 0...1 range
hyp = math.sqrt(math.pow(x, 2) + math.pow(y, 2))
shade = hyp / 2.1
shade = 1 if shade > 1 else shade
angle += speed
depth = speed + (hyp / 10)
col1 = hue_to_rgb[step % 255]
col1 = (col1[0] * 0.8, col1[1] * 0.8, col1[2] * 0.8)
col2 = hue_to_rgb[step % 255]
col2 = (col2[0] * 0.3, col2[1] * 0.3, col2[2] * 0.3)
col = col1 if int(abs(angle * 6.0)) % 2 == 0 else col2
td = .3 if int(abs(depth * 3.0)) % 2 == 0 else 0
col = (col[0] + td, col[1] + td, col[2] + td)
col = (col[0] * shade, col[1] * shade, col[2] * shade)
return (col[0] * 255, col[1] * 255, col[2] * 255)