本文整理汇总了Python中maskrcnn_benchmark.utils.comm.is_main_process方法的典型用法代码示例。如果您正苦于以下问题:Python comm.is_main_process方法的具体用法?Python comm.is_main_process怎么用?Python comm.is_main_process使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类maskrcnn_benchmark.utils.comm
的用法示例。
在下文中一共展示了comm.is_main_process方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _accumulate_predictions_from_multiple_gpus
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import is_main_process [as 别名]
def _accumulate_predictions_from_multiple_gpus(predictions_per_gpu):
all_predictions = scatter_gather(predictions_per_gpu)
if not is_main_process():
return
# merge the list of dicts
predictions = {}
for p in all_predictions:
predictions.update(p)
# convert a dict where the key is the index in a list
image_ids = list(sorted(predictions.keys()))
if len(image_ids) != image_ids[-1] + 1:
logger = logging.getLogger("maskrcnn_benchmark.eval_IR")
logger.warning(
"Number of images that were gathered from multiple processes is not "
"a contiguous set. Some images might be missing from the evaluation"
)
# convert to a list
predictions = [predictions[i] for i in image_ids]
return predictions
示例2: test_and_exchange_map
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import is_main_process [as 别名]
def test_and_exchange_map(tester, model, distributed):
results = tester(model=model, distributed=distributed)
# main process only
if is_main_process():
# Note: one indirection due to possibility of multiple test datasets, we only care about the first
# tester returns (parsed results, raw results). In our case, don't care about the latter
map_results, raw_results = results[0]
bbox_map = map_results.results["bbox"]['AP']
segm_map = map_results.results["segm"]['AP']
else:
bbox_map = 0.
segm_map = 0.
if distributed:
map_tensor = torch.tensor([bbox_map, segm_map], dtype=torch.float32, device=torch.device("cuda"))
torch.distributed.broadcast(map_tensor, 0)
bbox_map = map_tensor[0].item()
segm_map = map_tensor[1].item()
return bbox_map, segm_map
示例3: print_mlperf
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import is_main_process [as 别名]
def print_mlperf(key, value=None):
if is_main_process():
maskrcnn_print(key=key, value=value)
示例4: cache_url
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import is_main_process [as 别名]
def cache_url(url, model_dir=None, progress=True):
r"""Loads the Torch serialized object at the given URL.
If the object is already present in `model_dir`, it's deserialized and
returned. The filename part of the URL should follow the naming convention
``filename-<sha256>.ext`` where ``<sha256>`` is the first eight or more
digits of the SHA256 hash of the contents of the file. The hash is used to
ensure unique names and to verify the contents of the file.
The default value of `model_dir` is ``$TORCH_HOME/models`` where
``$TORCH_HOME`` defaults to ``~/.torch``. The default directory can be
overridden with the ``$TORCH_MODEL_ZOO`` environment variable.
Args:
url (string): URL of the object to download
model_dir (string, optional): directory in which to save the object
progress (bool, optional): whether or not to display a progress bar to stderr
Example:
>>> cached_file = maskrcnn_benchmark.utils.model_zoo.cache_url('https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth')
"""
if model_dir is None:
torch_home = os.path.expanduser(os.getenv('TORCH_HOME', '~/.torch'))
model_dir = os.getenv('TORCH_MODEL_ZOO', os.path.join(torch_home, 'models'))
if not os.path.exists(model_dir):
os.makedirs(model_dir)
parts = urlparse(url)
filename = os.path.basename(parts.path)
if filename == "model_final.pkl":
# workaround as pre-trained Caffe2 models from Detectron have all the same filename
# so make the full path the filename by replacing / with _
filename = parts.path.replace("/", "_")
cached_file = os.path.join(model_dir, filename)
if not os.path.exists(cached_file) and is_main_process():
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
hash_prefix = HASH_REGEX.search(filename)
if hash_prefix is not None:
hash_prefix = hash_prefix.group(1)
# workaround: Caffe2 models don't have a hash, but follow the R-50 convention,
# which matches the hash PyTorch uses. So we skip the hash matching
# if the hash_prefix is less than 6 characters
if len(hash_prefix) < 6:
hash_prefix = None
_download_url_to_file(url, cached_file, hash_prefix, progress=progress)
synchronize()
return cached_file
示例5: cache_url
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import is_main_process [as 别名]
def cache_url(url, model_dir=None, progress=True):
r"""Loads the Torch serialized object at the given URL.
If the object is already present in `model_dir`, it's deserialized and
returned. The filename part of the URL should follow the naming convention
``filename-<sha256>.ext`` where ``<sha256>`` is the first eight or more
digits of the SHA256 hash of the contents of the file. The hash is used to
ensure unique names and to verify the contents of the file.
The default value of `model_dir` is ``$TORCH_HOME/models`` where
``$TORCH_HOME`` defaults to ``~/.torch``. The default directory can be
overridden with the ``$TORCH_MODEL_ZOO`` environment variable.
Args:
url (string): URL of the object to download
model_dir (string, optional): directory in which to save the object
progress (bool, optional): whether or not to display a progress bar to stderr
Example:
>>> cached_file = maskrcnn_benchmark.utils.model_zoo.cache_url('https://s3.amazonaws.com/pytorch/models/resnet18-5c106cde.pth')
"""
if model_dir is None:
torch_home = os.path.expanduser(os.getenv("TORCH_HOME", "~/.torch"))
model_dir = os.getenv("TORCH_MODEL_ZOO", os.path.join(torch_home, "models"))
if not os.path.exists(model_dir):
os.makedirs(model_dir)
parts = urlparse(url)
filename = os.path.basename(parts.path)
if filename == "model_final.pkl":
# workaround as pre-trained Caffe2 models from Detectron have all the same filename
# so make the full path the filename by replacing / with _
filename = parts.path.replace("/", "_")
cached_file = os.path.join(model_dir, filename)
if not os.path.exists(cached_file) and is_main_process():
sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
hash_prefix = HASH_REGEX.search(filename)
if hash_prefix is not None:
hash_prefix = hash_prefix.group(1)
# workaround: Caffe2 models don't have a hash, but follow the R-50 convention,
# which matches the hash PyTorch uses. So we skip the hash matching
# if the hash_prefix is less than 6 characters
if len(hash_prefix) < 6:
hash_prefix = None
_download_url_to_file(url, cached_file, hash_prefix, progress=progress)
synchronize()
return cached_file
示例6: inference
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import is_main_process [as 别名]
def inference(
model,
rngs,
data_loader,
iou_types=("bbox",),
box_only=False,
device="cuda",
expected_results=(),
expected_results_sigma_tol=4,
output_folder=None,
):
# convert to a torch.device for efficiency
device = torch.device(device)
num_devices = (
torch.distributed.get_world_size()
if torch.distributed.is_initialized()
else 1
)
dataset = data_loader.dataset
predictions = compute_on_dataset(model, rngs, data_loader, device)
# wait for all processes to complete before measuring the time
synchronize()
predictions = _accumulate_predictions_from_multiple_gpus(predictions)
if not is_main_process():
return
coco_results = {}
if "bbox" in iou_types:
coco_results["bbox"] = prepare_for_coco_detection(predictions, dataset)
results = COCOResults(*iou_types)
uuid1 = str(uuid.uuid1())
for iou_type in iou_types:
with tempfile.NamedTemporaryFile() as f:
file_path = f.name
if output_folder:
file_path = os.path.join(
output_folder, uuid1 + iou_type + ".json")
res = evaluate_predictions_on_coco(
dataset.coco, coco_results[iou_type], file_path, iou_type
)
results.update(res)
if os.path.isfile(file_path):
os.remove(file_path)
return results
示例7: inference
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import is_main_process [as 别名]
def inference(
model,
data_loader,
iou_types=("bbox",),
box_only=False,
device="cuda",
expected_results=(),
expected_results_sigma_tol=4,
without_nms=False,
output_folder=None,
):
# convert to a torch.device for efficiency
device = torch.device(device)
num_devices = (
torch.distributed.get_world_size()
if torch.distributed.is_initialized()
else 1
)
logger = logging.getLogger("maskrcnn_benchmark.eval_IR")
dataset = data_loader.dataset
logger.info("Start evaluation on {} images".format(len(dataset)))
start_time = time.time()
with_overlaps, without_overlaps = compute_on_dataset(model, data_loader, device)
# wait for all processes to complete before measuring the time
synchronize()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=total_time))
logger.info(
"Total inference time: {} ({} s / img per device, on {} devices)".format(
total_time_str, total_time * num_devices / len(dataset), num_devices
)
)
with_overlaps = _accumulate_predictions_from_multiple_gpus(with_overlaps)
without_overlaps = _accumulate_predictions_from_multiple_gpus(without_overlaps)
if not is_main_process():
return
logger.info("Evaluating IoU average Recall (IR)")
results = evaluate_iou_average_recall(with_overlaps, without_overlaps, output_folder)
logger.info(results)