本文整理汇总了Python中maskrcnn_benchmark.utils.comm.get_rank方法的典型用法代码示例。如果您正苦于以下问题:Python comm.get_rank方法的具体用法?Python comm.get_rank怎么用?Python comm.get_rank使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类maskrcnn_benchmark.utils.comm
的用法示例。
在下文中一共展示了comm.get_rank方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: train
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import get_rank [as 别名]
def train(cfg, local_rank, distributed):
model = build_detection_model(cfg)
device = torch.device(cfg.MODEL.DEVICE)
model.to(device)
optimizer = make_optimizer(cfg, model)
scheduler = make_lr_scheduler(cfg, optimizer)
if distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[local_rank], output_device=local_rank,
# this should be removed if we update BatchNorm stats
broadcast_buffers=False,
)
arguments = {}
arguments["iteration"] = 0
output_dir = cfg.OUTPUT_DIR
save_to_disk = get_rank() == 0
checkpointer = DetectronCheckpointer(
cfg, model, optimizer, scheduler, output_dir, save_to_disk
)
extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT)
arguments.update(extra_checkpoint_data)
data_loader = make_data_loader(
cfg,
is_train=True,
is_distributed=distributed,
start_iter=arguments["iteration"],
)
checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD
do_train(
model,
data_loader,
optimizer,
scheduler,
checkpointer,
device,
checkpoint_period,
arguments,
)
return model
示例2: main
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import get_rank [as 别名]
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training")
parser.add_argument(
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
help="Do not test the final model",
action="store_true",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
synchronize()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Collecting env info (might take some time)")
logger.info("\n" + collect_env_info())
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
model = train(cfg, args.local_rank, args.distributed)
if not args.skip_test:
run_test(cfg, model, args.distributed)
示例3: train
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import get_rank [as 别名]
def train(cfg, local_rank, distributed):
model = build_detection_model(cfg)
device = torch.device(cfg.MODEL.DEVICE)
model.to(device)
optimizer = make_optimizer(cfg, model)
scheduler = make_lr_scheduler(cfg, optimizer)
if distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[local_rank], output_device=local_rank,
# this should be removed if we update BatchNorm stats
broadcast_buffers=False,
)
arguments = {}
arguments["iteration"] = 0
output_dir = cfg.OUTPUT_DIR
save_to_disk = get_rank() == 0
checkpointer = DetectronCheckpointer(
cfg, model, optimizer, scheduler, output_dir, save_to_disk
)
extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT)
arguments.update(extra_checkpoint_data)
arguments["iteration"] = 0
data_loader = make_data_loader(
cfg,
is_train=True,
is_distributed=distributed,
start_iter=arguments["iteration"],
)
checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD
do_train(
model,
data_loader,
optimizer,
scheduler,
checkpointer,
device,
checkpoint_period,
arguments,
)
return model
示例4: main
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import get_rank [as 别名]
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training")
parser.add_argument(
"--config-file",
default="../configs/e2e_r2cnn_R_50_FPN_1x.yaml",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
default=True,
help="Do not test the final model",
action="store_true",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
synchronize()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Collecting env info (might take some time)")
logger.info("\n" + collect_env_info())
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
model = train(cfg, args.local_rank, args.distributed)
if not args.skip_test:
run_test(cfg, model, args.distributed)
示例5: fitness
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import get_rank [as 别名]
def fitness(gpu, ngpus_per_node, cfg, args, rngs, salt, conn):
num_gpus = int(os.environ["WORLD_SIZE"]) \
if "WORLD_SIZE" in os.environ else 1
args["distributed"] = num_gpus > 1
args["local_rank"] = gpu
if args["distributed"]:
torch.cuda.set_device(args["local_rank"])
torch.distributed.init_process_group(
backend="nccl", init_method="env://",
world_size=num_gpus, rank=args["local_rank"]
)
model = GeneralizedRCNN(cfg)
model.to(cfg.MODEL.DEVICE)
save_to_disk = get_rank() == 0
checkpointer = DetectronCheckpointer2(
cfg, model, save_dir=cfg.OUTPUT_DIR, save_to_disk=save_to_disk)
extra_checkpoint_data = checkpointer.load(os.path.join(cfg.OUTPUT_DIR, salt+".pth"))
iou_types = ("bbox",)
if cfg.MODEL.MASK_ON:
iou_types = iou_types + ("segm",)
output_folders = [None] * len(cfg.DATASETS.TEST)
if cfg.OUTPUT_DIR:
dataset_names = cfg.DATASETS.TEST
for idx, dataset_name in enumerate(dataset_names):
output_folder = os.path.join(
cfg.OUTPUT_DIR, "inference", dataset_name)
mkdir(output_folder)
output_folders[idx] = output_folder
data_loaders_val = make_data_loader(
cfg, is_train=False, is_distributed=args["distributed"])
for output_folder, data_loader_val in zip(output_folders, data_loaders_val):
results = inference(
model,
rngs,
data_loader_val,
iou_types=iou_types,
box_only=False,
device=cfg.MODEL.DEVICE,
expected_results=cfg.TEST.EXPECTED_RESULTS,
expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
output_folder=output_folder,
)
synchronize()
if get_rank() == 0:
conn.send(results.results['bbox']['AP'])
conn.close()
示例6: train
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import get_rank [as 别名]
def train(cfg, local_rank, distributed):
model = build_detection_model(cfg)
device = torch.device(cfg.MODEL.DEVICE)
model.to(device)
optimizer = make_optimizer(cfg, model)
scheduler = make_lr_scheduler(cfg, optimizer)
if distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[local_rank], output_device=local_rank,
# this should be removed if we update BatchNorm stats
broadcast_buffers=False,
)
arguments = {}
arguments["iteration"] = 0
output_dir = cfg.OUTPUT_DIR
save_to_disk = get_rank() == 0
checkpointer = DetectronCheckpointer(
cfg, model, optimizer, scheduler, output_dir, save_to_disk
)
extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT)
arguments.update(extra_checkpoint_data)
data_loader = make_data_loader( # clw note:创建数据集
cfg,
is_train=True,
is_distributed=distributed,
start_iter=arguments["iteration"],
)
checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD
do_train(
model,
data_loader,
optimizer,
scheduler,
checkpointer,
device,
checkpoint_period,
arguments,
)
return model
示例7: main
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import get_rank [as 别名]
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training")
parser.add_argument(
"--config-file",
default="../configs/rrpn/e2e_rrpn_X_101_32x8d_FPN_1x_DOTA.yaml",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
help="Do not test the final model",
action="store_true",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
synchronize()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Collecting env info (might take some time)")
logger.info("\n" + collect_env_info())
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
model = train(cfg, args.local_rank, args.distributed)
if not args.skip_test:
test(cfg, model, args.distributed)
示例8: train
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import get_rank [as 别名]
def train(cfg, local_rank, distributed):
model = build_detection_model(cfg)
device = torch.device(cfg.MODEL.DEVICE)
model.to(device)
if cfg.SOLVER.ENABLE_FP16:
model.half()
optimizer = make_optimizer(cfg, model)
scheduler = make_lr_scheduler(cfg, optimizer)
if distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[local_rank], output_device=local_rank,
# this should be removed if we update BatchNorm stats
# broadcast_buffers=False,
)
arguments = {}
arguments["iteration"] = 0
output_dir = cfg.OUTPUT_DIR
save_to_disk = get_rank() == 0
checkpointer = DetectronCheckpointer(
cfg, model, optimizer, scheduler, output_dir, save_to_disk
)
print(cfg.MODEL.WEIGHT)
extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT)
arguments.update(extra_checkpoint_data)
data_loader = make_data_loader(
cfg,
is_train=True,
is_distributed=distributed,
start_iter=arguments["iteration"],
)
checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD
do_train(
model,
data_loader,
optimizer,
scheduler,
checkpointer,
device,
checkpoint_period,
arguments,
cfg
)
return model
示例9: main
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import get_rank [as 别名]
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training")
parser.add_argument(
"--config-file",
default="configs/free_anchor_R-50-FPN_8gpu_1x.yaml",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
help="Do not test the final model",
action="store_true",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank % torch.cuda.device_count())
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Collecting env info (might take some time)")
logger.info("\n" + collect_env_info())
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
model = train(cfg, args.local_rank, args.distributed)
if not args.skip_test:
test(cfg, model, args.distributed)
示例10: train
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import get_rank [as 别名]
def train(cfg, local_rank, distributed):
model = build_detection_model(cfg)
device = torch.device(cfg.MODEL.DEVICE)
model.to(device)
optimizer = make_optimizer(cfg, model)
scheduler = make_lr_scheduler(cfg, optimizer)
if distributed:
model = torch.nn.parallel.deprecated.DistributedDataParallel(
model, device_ids=[local_rank], output_device=local_rank,
# this should be removed if we update BatchNorm stats
broadcast_buffers=False,
)
arguments = {}
arguments["iteration"] = 0
output_dir = cfg.OUTPUT_DIR
save_to_disk = get_rank() == 0
checkpointer = DetectronCheckpointer(
cfg, model, optimizer, scheduler, output_dir, save_to_disk
)
extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT)
arguments.update(extra_checkpoint_data)
data_loader = make_data_loader(
cfg,
is_train=True,
is_distributed=distributed,
start_iter=arguments["iteration"],
)
checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD
do_train(
model,
data_loader,
optimizer,
scheduler,
checkpointer,
device,
checkpoint_period,
arguments,
)
return model
示例11: main
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import get_rank [as 别名]
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training")
parser.add_argument(
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
help="Do not test the final model",
action="store_true",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.deprecated.init_process_group(
backend="nccl", init_method="env://"
)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Collecting env info (might take some time)")
logger.info("\n" + collect_env_info())
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
model = train(cfg, args.local_rank, args.distributed)
if not args.skip_test:
test(cfg, model, args.distributed)
示例12: main
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import get_rank [as 别名]
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training")
parser.add_argument(
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
help="Do not test the final model",
action="store_true",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
synchronize()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Collecting env info (might take some time)")
logger.info("\n" + collect_env_info())
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
model = train(cfg, args.local_rank, args.distributed)
if not args.skip_test:
test(cfg, model, args.distributed)
示例13: __init__
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import get_rank [as 别名]
def __init__(
self, ann_file, root, mode, resolution, backbone, post_branch,
remove_images_without_annotations, transforms=None,
special_deal=False
):
super(COCODataset, self).__init__(root, ann_file)
self.mode = mode
self.rank = get_rank()
self.backbone = backbone
self.transforms = transforms
self.resolution = resolution
self.post_branch = post_branch
self.special_deal = special_deal
self._img_search_set = os.path.join(ann_file, "%s.txt")
self._split_feature = os.path.join(ann_file, "features_%s_%s", "%s.pth")
self._split_target = os.path.join(ann_file, self.post_branch, "targets_%s_%s", "%s.pth")
self._split_label = os.path.join(ann_file, self.post_branch, "labels_%s_%s", "%s.pth")
self._split_reg = os.path.join(ann_file, self.post_branch, "regs_%s_%s", "%s.pth")
if self.mode == 0:
# sort indices for reproducible results
self.ids = sorted(self.ids)
# filter images without detection annotations
if remove_images_without_annotations:
self.ids = [
img_id
for img_id in self.ids
if len(self.coco.getAnnIds(imgIds=img_id, iscrowd=None)) > 0
]
self.json_category_id_to_contiguous_id = {
v: i + 1 for i, v in enumerate(self.coco.getCatIds())
}
self.contiguous_category_id_to_json_id = {
v: k for k, v in self.json_category_id_to_contiguous_id.items()
}
self.id_to_img_map = {k: v for k, v in enumerate(self.ids)}
elif self.mode == 1:
try:
image_set_name = "coco_%s_%s_%s_search" % (
self.backbone, self.resolution, self.post_branch
)
with open(self._img_search_set % image_set_name) as f:
self.ids = f.readlines()
self.ids = [x.strip("\n") for x in enumerate(self.ids)]
except FileNotFoundError:
raise ValueError("Can not open file {}.txt".format(image_set_name))
else:
raise ValueError("Mode {} is not available for COCO Dataset".format(self.mode))
示例14: main
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import get_rank [as 别名]
def main():
parser = argparse.ArgumentParser(description="PyTorch Object Detection Training")
parser.add_argument(
"--config-file",
default="",
metavar="FILE",
help="path to config file",
type=str,
)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument(
"--skip-test",
dest="skip_test",
help="Do not test the final model",
action="store_true",
)
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
num_gpus = int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1
args.distributed = num_gpus > 1
if args.distributed:
torch.cuda.set_device(args.local_rank)
torch.distributed.init_process_group(
backend="nccl", init_method="env://"
)
synchronize()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
output_dir = cfg.OUTPUT_DIR
if output_dir:
mkdir(output_dir)
logger = setup_logger("maskrcnn_benchmark", output_dir, get_rank())
logger.info("Using {} GPUs".format(num_gpus))
logger.info(args)
logger.info("Collecting env info (might take some time)")
logger.info("\n" + collect_env_info())
logger.info("Loaded configuration file {}".format(args.config_file))
with open(args.config_file, "r") as cf:
config_str = "\n" + cf.read()
logger.info(config_str)
logger.info("Running with config:\n{}".format(cfg))
logger.info("Arch Decoder: {}".format(cfg.SEARCH.DECODER.CONFIG))
model = train(cfg, args.local_rank, args.distributed)
if not args.skip_test:
run_test(cfg, model, args.distributed)
示例15: train
# 需要导入模块: from maskrcnn_benchmark.utils import comm [as 别名]
# 或者: from maskrcnn_benchmark.utils.comm import get_rank [as 别名]
def train(cfg, local_rank, distributed):
model = build_detection_model(cfg)
device = torch.device(cfg.MODEL.DEVICE)
model.to(device)
optimizer = make_optimizer(cfg, model)
scheduler = make_lr_scheduler(cfg, optimizer)
if distributed:
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[local_rank], output_device=local_rank,
# this should be removed if we update BatchNorm stats
broadcast_buffers=False,
)
arguments = {}
arguments["iteration"] = 0
output_dir = cfg.OUTPUT_DIR
save_to_disk = get_rank() == 0
checkpointer = DetectronCheckpointer(
cfg, model, optimizer, scheduler, output_dir, save_to_disk
)
extra_checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT)
arguments.update(extra_checkpoint_data)
data_loader = make_data_loader(
cfg,
is_train=True,
is_distributed=distributed,
start_iter=arguments["iteration"],
)
checkpoint_period = cfg.SOLVER.CHECKPOINT_PERIOD
do_train(
model,
data_loader,
optimizer,
scheduler,
checkpointer,
device,
checkpoint_period,
arguments,
)
return model