当前位置: 首页>>代码示例>>Python>>正文


Python utils.cat方法代码示例

本文整理汇总了Python中maskrcnn_benchmark.modeling.utils.cat方法的典型用法代码示例。如果您正苦于以下问题:Python utils.cat方法的具体用法?Python utils.cat怎么用?Python utils.cat使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在maskrcnn_benchmark.modeling.utils的用法示例。


在下文中一共展示了utils.cat方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __call__

# 需要导入模块: from maskrcnn_benchmark.modeling import utils [as 别名]
# 或者: from maskrcnn_benchmark.modeling.utils import cat [as 别名]
def __call__(self, proposals, keypoint_logits):
        heatmaps = []
        valid = []
        for proposals_per_image in proposals:
            kp = proposals_per_image.get_field("keypoints")
            heatmaps_per_image, valid_per_image = project_keypoints_to_heatmap(
                kp, proposals_per_image, self.discretization_size
            )
            heatmaps.append(heatmaps_per_image.view(-1))
            valid.append(valid_per_image.view(-1))

        keypoint_targets = cat(heatmaps, dim=0)
        valid = cat(valid, dim=0).to(dtype=torch.uint8)
        valid = torch.nonzero(valid).squeeze(1)

        # torch.mean (in binary_cross_entropy_with_logits) does'nt
        # accept empty tensors, so handle it sepaartely
        if keypoint_targets.numel() == 0 or len(valid) == 0:
            return keypoint_logits.sum() * 0

        N, K, H, W = keypoint_logits.shape
        keypoint_logits = keypoint_logits.view(N * K, H * W)

        keypoint_loss = F.cross_entropy(keypoint_logits[valid], keypoint_targets[valid])
        return keypoint_loss 
开发者ID:Res2Net,项目名称:Res2Net-maskrcnn,代码行数:27,代码来源:loss.py

示例2: __call__

# 需要导入模块: from maskrcnn_benchmark.modeling import utils [as 别名]
# 或者: from maskrcnn_benchmark.modeling.utils import cat [as 别名]
def __call__(self, proposals, keypoint_logits):
        heatmaps = []
        valid = []
        for proposals_per_image in proposals:
            kp = proposals_per_image.get_field("keypoints")
            heatmaps_per_image, valid_per_image = project_keypoints_to_heatmap(
                kp, proposals_per_image, self.discretization_size
            )
            heatmaps.append(heatmaps_per_image.view(-1))
            valid.append(valid_per_image.view(-1))

        keypoint_targets = cat(heatmaps, dim=0)
        valid = cat(valid, dim=0).to(dtype=torch.bool)
        valid = torch.nonzero(valid).squeeze(1)

        # torch.mean (in binary_cross_entropy_with_logits) does'nt
        # accept empty tensors, so handle it sepaartely
        if keypoint_targets.numel() == 0 or len(valid) == 0:
            return keypoint_logits.sum() * 0

        N, K, H, W = keypoint_logits.shape
        keypoint_logits = keypoint_logits.view(N * K, H * W)

        keypoint_loss = F.cross_entropy(keypoint_logits[valid], keypoint_targets[valid])
        return keypoint_loss 
开发者ID:Xiangyu-CAS,项目名称:R2CNN.pytorch,代码行数:27,代码来源:loss.py

示例3: cat_boxlist_with_keypoints

# 需要导入模块: from maskrcnn_benchmark.modeling import utils [as 别名]
# 或者: from maskrcnn_benchmark.modeling.utils import cat [as 别名]
def cat_boxlist_with_keypoints(boxlists):
    assert all(boxlist.has_field("keypoints") for boxlist in boxlists)

    kp = [boxlist.get_field("keypoints").keypoints for boxlist in boxlists]
    kp = cat(kp, 0)

    fields = boxlists[0].get_fields()
    fields = [field for field in fields if field != "keypoints"]

    boxlists = [boxlist.copy_with_fields(fields) for boxlist in boxlists]
    boxlists = cat_boxlist(boxlists)
    boxlists.add_field("keypoints", kp)
    return boxlists 
开发者ID:Res2Net,项目名称:Res2Net-maskrcnn,代码行数:15,代码来源:loss.py

示例4: __call__

# 需要导入模块: from maskrcnn_benchmark.modeling import utils [as 别名]
# 或者: from maskrcnn_benchmark.modeling.utils import cat [as 别名]
def __call__(self, proposals, mask_logits, targets):
        """
        Arguments:
            proposals (list[BoxList])
            mask_logits (Tensor)
            targets (list[BoxList])

        Return:
            mask_loss (Tensor): scalar tensor containing the loss
        """
        labels, mask_targets = self.prepare_targets(proposals, targets)

        labels = cat(labels, dim=0)
        mask_targets = cat(mask_targets, dim=0)

        positive_inds = torch.nonzero(labels > 0).squeeze(1)
        labels_pos = labels[positive_inds]

        # torch.mean (in binary_cross_entropy_with_logits) doesn't
        # accept empty tensors, so handle it separately
        if mask_targets.numel() == 0:
            return mask_logits.sum() * 0

        mask_loss = F.binary_cross_entropy_with_logits(
            mask_logits[positive_inds, labels_pos], mask_targets
        )
        return mask_loss 
开发者ID:Res2Net,项目名称:Res2Net-maskrcnn,代码行数:29,代码来源:loss.py


注:本文中的maskrcnn_benchmark.modeling.utils.cat方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。