本文整理汇总了Python中maskrcnn_benchmark.modeling.roi_heads.mask_head.inference.Masker方法的典型用法代码示例。如果您正苦于以下问题:Python inference.Masker方法的具体用法?Python inference.Masker怎么用?Python inference.Masker使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类maskrcnn_benchmark.modeling.roi_heads.mask_head.inference
的用法示例。
在下文中一共展示了inference.Masker方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from maskrcnn_benchmark.modeling.roi_heads.mask_head import inference [as 别名]
# 或者: from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker [as 别名]
def __init__(
self,
cfg,
confidence_threshold=0.7,
show_mask_heatmaps=False,
masks_per_dim=2,
min_image_size=224,
):
self.cfg = cfg.clone()
self.model = build_detection_model(cfg)
self.model.eval()
self.device = torch.device(cfg.MODEL.DEVICE)
self.model.to(self.device)
self.min_image_size = min_image_size
save_dir = cfg.OUTPUT_DIR
checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
_ = checkpointer.load(cfg.MODEL.WEIGHT)
self.transforms = self.build_transform()
mask_threshold = -1 if show_mask_heatmaps else 0.5
self.masker = Masker(threshold=mask_threshold, padding=1)
# used to make colors for each class
self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
self.cpu_device = torch.device("cpu")
self.confidence_threshold = confidence_threshold
self.show_mask_heatmaps = show_mask_heatmaps
self.masks_per_dim = masks_per_dim
示例2: __init__
# 需要导入模块: from maskrcnn_benchmark.modeling.roi_heads.mask_head import inference [as 别名]
# 或者: from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker [as 别名]
def __init__(
self,
cfg,
confidence_threshold=0.7,
show_mask_heatmaps=False,
masks_per_dim=2,
min_image_size=224,
weight_loading = None
):
self.cfg = cfg.clone()
self.model = build_detection_model(cfg)
self.model.eval()
self.device = torch.device(cfg.MODEL.DEVICE)
self.model.to(self.device)
self.min_image_size = min_image_size
save_dir = cfg.OUTPUT_DIR
checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
_ = checkpointer.load(cfg.MODEL.WEIGHT)
if weight_loading:
print('Loading weight from {}.'.format(weight_loading))
_ = checkpointer._load_model(torch.load(weight_loading))
self.transforms = self.build_transform()
mask_threshold = -1 if show_mask_heatmaps else 0.5
self.masker = Masker(threshold=mask_threshold, padding=1)
# used to make colors for each class
self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
self.cpu_device = torch.device("cpu")
self.confidence_threshold = confidence_threshold
self.show_mask_heatmaps = show_mask_heatmaps
self.masks_per_dim = masks_per_dim
示例3: __init__
# 需要导入模块: from maskrcnn_benchmark.modeling.roi_heads.mask_head import inference [as 别名]
# 或者: from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker [as 别名]
def __init__(
self,
cfg,
confidence_threshold=0.7,
show_mask_heatmaps=False,
masks_per_dim=2,
min_image_size=224,
):
self.color_list = colormap()
self.cfg = cfg.clone()
self.model = build_detection_model(cfg)
self.model.eval()
self.device = torch.device(cfg.MODEL.DEVICE)
self.model.to(self.device)
self.min_image_size = min_image_size
save_dir = cfg.OUTPUT_DIR
checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
_ = checkpointer.load(cfg.MODEL.WEIGHT)
self.transforms = self.build_transform()
mask_threshold = -1 if show_mask_heatmaps else 0.5
self.masker = Masker(threshold=mask_threshold, padding=1)
# used to make colors for each class
self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
self.cpu_device = torch.device("cpu")
self.confidence_threshold = torch.tensor(confidence_threshold)
self.show_mask_heatmaps = show_mask_heatmaps
self.masks_per_dim = masks_per_dim
示例4: __init__
# 需要导入模块: from maskrcnn_benchmark.modeling.roi_heads.mask_head import inference [as 别名]
# 或者: from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker [as 别名]
def __init__(
self,
cfg,
confidence_threshold=0.7,
show_mask_heatmaps=False,
masks_per_dim=2,
min_image_size=224,
):
self.cfg = cfg.clone()
self.model = build_detection_model(cfg)
self.model.eval()
self.device = torch.device(cfg.MODEL.DEVICE)
self.model.to(self.device)
self.min_image_size = min_image_size
checkpointer = DetectronCheckpointer(cfg, self.model)
_ = checkpointer.load(cfg.MODEL.WEIGHT)
self.checkpointer = checkpointer
self.transforms = self.build_transform()
mask_threshold = -1 if show_mask_heatmaps else 0.5
self.masker = Masker(threshold=mask_threshold, padding=1)
# used to make colors for each class
self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
self.cpu_device = torch.device("cpu")
self.confidence_threshold = confidence_threshold
self.show_mask_heatmaps = show_mask_heatmaps
self.masks_per_dim = masks_per_dim
self.CATEGORIES = COCO_CATEGORIES if cfg.DATASETS.TEST[0][:4] == 'coco' else VOC_CATEGORIES
示例5: __init__
# 需要导入模块: from maskrcnn_benchmark.modeling.roi_heads.mask_head import inference [as 别名]
# 或者: from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker [as 别名]
def __init__(
self,
cfg,
confidence_threshold=0.7,
show_mask_heatmaps=False,
masks_per_dim=2,
min_image_size=224,
):
self.cfg = cfg.clone()
self.model = build_detection_model(cfg)
self.model.eval()
self.device = torch.device(cfg.MODEL.DEVICE)
self.model.to(self.device)
self.min_image_size = min_image_size
checkpointer = DetectronCheckpointer(cfg, self.model)
_ = checkpointer.load(cfg.MODEL.WEIGHT)
self.transforms = self.build_transform()
mask_threshold = -1 if show_mask_heatmaps else 0.5
self.masker = Masker(threshold=mask_threshold, padding=1)
# used to make colors for each class
self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
self.cpu_device = torch.device("cpu")
self.confidence_threshold = confidence_threshold
self.show_mask_heatmaps = show_mask_heatmaps
self.masks_per_dim = masks_per_dim
示例6: prepare_for_coco_segmentation
# 需要导入模块: from maskrcnn_benchmark.modeling.roi_heads.mask_head import inference [as 别名]
# 或者: from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker [as 别名]
def prepare_for_coco_segmentation(predictions, dataset):
import pycocotools.mask as mask_util
import numpy as np
masker = Masker(threshold=0.5, padding=1)
# assert isinstance(dataset, COCODataset)
coco_results = []
for image_id, prediction in tqdm(enumerate(predictions)):
original_id = dataset.id_to_img_map[image_id]
if len(prediction) == 0:
continue
img_info = dataset.get_img_info(image_id)
image_width = img_info["width"]
image_height = img_info["height"]
prediction = prediction.resize((image_width, image_height))
masks = prediction.get_field("mask")
# t = time.time()
# Masker is necessary only if masks haven't been already resized.
if list(masks.shape[-2:]) != [image_height, image_width]:
masks = masker(masks.expand(1, -1, -1, -1, -1), prediction)
masks = masks[0]
# logger.info('Time mask: {}'.format(time.time() - t))
# prediction = prediction.convert('xywh')
# boxes = prediction.bbox.tolist()
scores = prediction.get_field("scores").tolist()
labels = prediction.get_field("labels").tolist()
# rles = prediction.get_field('mask')
rles = [
mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
for mask in masks
]
for rle in rles:
rle["counts"] = rle["counts"].decode("utf-8")
mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]
coco_results.extend(
[
{
"image_id": original_id,
"category_id": mapped_labels[k],
"segmentation": rle,
"score": scores[k],
}
for k, rle in enumerate(rles)
]
)
return coco_results
示例7: __init__
# 需要导入模块: from maskrcnn_benchmark.modeling.roi_heads.mask_head import inference [as 别名]
# 或者: from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker [as 别名]
def __init__(
self,
model,
CATEGORIES,
dataset,
confidence_threshold=0.5,
show_mask_heatmaps=False,
masks_per_dim=2,
min_image_size=224,
):
if model == 'faster':
config_file = "faster-retina/configs/e2e_faster_rcnn_R_50_FPN_1x_{}_test.yaml".format(dataset)
if model == 'retinanet':
config_file = 'faster-retina/configs/retinanet_R-50-FPN_1x-{}.yaml'.format(dataset)
if model == 'maskrcnn':
config_file = 'faster-retina/configs/e2e_mask_rcnn_R_50_FPN_1x-{}.yaml'.format(dataset)
cfg.merge_from_file(config_file)
self.cfg = cfg.clone()
self.CATEGORIES = CATEGORIES
self.model = build_detection_model(cfg)
self.model.eval()
self.device = torch.device('cuda')
self.model.to(self.device)
self.min_image_size = min_image_size
self.feat_extractor = FeatureExtractorFromBoxes(self.model)
save_dir = cfg.OUTPUT_DIR
checkpointer = DetectronCheckpointer(cfg, self.model, save_dir=save_dir)
_ = checkpointer.load(cfg.MODEL.WEIGHT)
self.transforms = self.build_transform()
mask_threshold = -1 if show_mask_heatmaps else 0.5
self.masker = Masker(threshold=mask_threshold, padding=1)
# used to make colors for each class
self.palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
self.cpu_device = torch.device("cpu")
self.confidence_threshold = confidence_threshold
self.show_mask_heatmaps = show_mask_heatmaps
self.masks_per_dim = masks_per_dim
示例8: prepare_for_coco_segmentation
# 需要导入模块: from maskrcnn_benchmark.modeling.roi_heads.mask_head import inference [as 别名]
# 或者: from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker [as 别名]
def prepare_for_coco_segmentation(predictions, dataset):
import pycocotools.mask as mask_util
import numpy as np
masker = Masker(threshold=0.5, padding=1)
# assert isinstance(dataset, COCODataset)
coco_results = []
for image_id, prediction in tqdm(enumerate(predictions)):
original_id = dataset.id_to_img_map[image_id]
if len(prediction) == 0:
continue
# TODO replace with get_img_info?
image_width = dataset.coco.imgs[original_id]["width"]
image_height = dataset.coco.imgs[original_id]["height"]
prediction = prediction.resize((image_width, image_height))
masks = prediction.get_field("mask")
# t = time.time()
# Masker is necessary only if masks haven't been already resized.
if list(masks.shape[-2:]) != [image_height, image_width]:
masks = masker(masks.expand(1, -1, -1, -1, -1), prediction)
masks = masks[0]
# logger.info('Time mask: {}'.format(time.time() - t))
# prediction = prediction.convert('xywh')
# boxes = prediction.bbox.tolist()
scores = prediction.get_field("scores").tolist()
labels = prediction.get_field("labels").tolist()
# rles = prediction.get_field('mask')
rles = [
mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
for mask in masks
]
for rle in rles:
rle["counts"] = rle["counts"].decode("utf-8")
mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]
coco_results.extend(
[
{
"image_id": original_id,
"category_id": mapped_labels[k],
"segmentation": rle,
"score": scores[k],
}
for k, rle in enumerate(rles)
]
)
return coco_results
# inspired from Detectron
示例9: prepare_for_coco_segmentation
# 需要导入模块: from maskrcnn_benchmark.modeling.roi_heads.mask_head import inference [as 别名]
# 或者: from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker [as 别名]
def prepare_for_coco_segmentation(predictions, dataset):
import pycocotools.mask as mask_util
import numpy as np
masker = Masker(threshold=0.5, padding=1)
# assert isinstance(dataset, COCODataset)
coco_results = []
for image_id, prediction in tqdm(enumerate(predictions)):
original_id = dataset.id_to_img_map[image_id]
if len(prediction) == 0:
continue
# TODO replace with get_img_info?
image_width = dataset.coco.imgs[original_id]["width"]
image_height = dataset.coco.imgs[original_id]["height"]
prediction = prediction.resize((image_width, image_height))
masks = prediction.get_field("mask")
# t = time.time()
masks = masker(masks, prediction)
# logger.info('Time mask: {}'.format(time.time() - t))
# prediction = prediction.convert('xywh')
# boxes = prediction.bbox.tolist()
scores = prediction.get_field("scores").tolist()
labels = prediction.get_field("labels").tolist()
# rles = prediction.get_field('mask')
rles = [
mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
for mask in masks
]
for rle in rles:
rle["counts"] = rle["counts"].decode("utf-8")
mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]
coco_results.extend(
[
{
"image_id": original_id,
"category_id": mapped_labels[k],
"segmentation": rle,
"score": scores[k],
}
for k, rle in enumerate(rles)
]
)
return coco_results
# inspired from Detectron
示例10: prepare_for_coco_segmentation
# 需要导入模块: from maskrcnn_benchmark.modeling.roi_heads.mask_head import inference [as 别名]
# 或者: from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker [as 别名]
def prepare_for_coco_segmentation(predictions, dataset):
import pycocotools.mask as mask_util
import numpy as np
masker = Masker(threshold=0.5, padding=1)
# assert isinstance(dataset, COCODataset)
coco_results = []
for image_id, prediction in tqdm(enumerate(predictions)):
original_id = dataset.id_to_img_map[image_id]
if len(prediction) == 0:
continue
img_info = dataset.get_img_info(image_id)
image_width = img_info["width"]
image_height = img_info["height"]
prediction = prediction.resize((image_width, image_height))
masks = prediction.get_field("mask")
# t = time.time()
# Masker is necessary only if masks haven't been already resized.
if list(masks.shape[-2:]) != [image_height, image_width]:
masks = masker(masks.expand(1, -1, -1, -1, -1), prediction)
masks = masks[0]
# logger.info('Time mask: {}'.format(time.time() - t))
# prediction = prediction.convert('xywh')
# boxes = prediction.bbox.tolist()
scores = prediction.get_field("scores").tolist()
labels = prediction.get_field("labels").tolist()
# rles = prediction.get_field('mask')
rles = [
mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0]
for mask in masks
]
for rle in rles:
rle["counts"] = rle["counts"].decode("utf-8")
mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels]
coco_results.extend(
[
{
"image_id": original_id,
"category_id": mapped_labels[k],
"segmentation": rle,
"score": scores[k],
}
for k, rle in enumerate(rles)
]
)
return coco_results
# inspired from Detectron