当前位置: 首页>>代码示例>>Python>>正文


Python evaluation.evaluate方法代码示例

本文整理汇总了Python中maskrcnn_benchmark.data.datasets.evaluation.evaluate方法的典型用法代码示例。如果您正苦于以下问题:Python evaluation.evaluate方法的具体用法?Python evaluation.evaluate怎么用?Python evaluation.evaluate使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在maskrcnn_benchmark.data.datasets.evaluation的用法示例。


在下文中一共展示了evaluation.evaluate方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: evaluate_predictions_on_coco

# 需要导入模块: from maskrcnn_benchmark.data.datasets import evaluation [as 别名]
# 或者: from maskrcnn_benchmark.data.datasets.evaluation import evaluate [as 别名]
def evaluate_predictions_on_coco(
    coco_gt, coco_results, json_result_file, iou_type="bbox"
):
    import json

    with open(json_result_file, "w") as f:
        json.dump(coco_results, f)

    from pycocotools.cocoeval import COCOeval

    coco_dt = coco_gt.loadRes(str(json_result_file))
    # coco_dt = coco_gt.loadRes(coco_results)
    coco_eval = COCOeval(coco_gt, coco_dt, iou_type)
    coco_eval.evaluate()
    coco_eval.accumulate()
    coco_eval.summarize()
    return coco_eval 
开发者ID:megvii-model,项目名称:DetNAS,代码行数:19,代码来源:inference.py

示例2: inference

# 需要导入模块: from maskrcnn_benchmark.data.datasets import evaluation [as 别名]
# 或者: from maskrcnn_benchmark.data.datasets.evaluation import evaluate [as 别名]
def inference(
        model,
        data_loader,
        dataset_name,
        iou_types=("bbox",),
        box_only=False,
        device="cuda",
        expected_results=(),
        expected_results_sigma_tol=4,
        output_folder=None,
):
    # convert to a torch.device for efficiency
    device = torch.device(device)
    num_devices = (
        torch.distributed.get_world_size()
        if torch.distributed.is_initialized()
        else 1
    )
    logger = logging.getLogger("maskrcnn_benchmark.inference")
    dataset = data_loader.dataset
    logger.info("Start evaluation on {} dataset({} images).".format(dataset_name, len(dataset)))
    start_time = time.time()
    predictions = compute_on_dataset(model, data_loader, device)
    # wait for all processes to complete before measuring the time
    synchronize()
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=total_time))
    logger.info(
        "Total inference time: {} ({} s / img per device, on {} devices)".format(
            total_time_str, total_time * num_devices / len(dataset), num_devices
        )
    )

    predictions = _accumulate_predictions_from_multiple_gpus(predictions)
    if not is_main_process():
        return

    if output_folder:
        torch.save(predictions, os.path.join(output_folder, "predictions.pth"))

    extra_args = dict(
        box_only=box_only,
        iou_types=iou_types,
        expected_results=expected_results,
        expected_results_sigma_tol=expected_results_sigma_tol,
    )

    return evaluate(dataset=dataset,
                    predictions=predictions,
                    output_folder=output_folder,
                    **extra_args) 
开发者ID:Res2Net,项目名称:Res2Net-maskrcnn,代码行数:53,代码来源:inference.py

示例3: inference

# 需要导入模块: from maskrcnn_benchmark.data.datasets import evaluation [as 别名]
# 或者: from maskrcnn_benchmark.data.datasets.evaluation import evaluate [as 别名]
def inference(
        model,
        data_loader,
        dataset_name,
        iou_types=("bbox",),
        box_only=False,
        device="cuda",
        expected_results=(),
        expected_results_sigma_tol=4,
        output_folder=None,
):
    # convert to a torch.device for efficiency
    device = torch.device(device)
    num_devices = get_world_size()
    logger = logging.getLogger("maskrcnn_benchmark.inference")
    dataset = data_loader.dataset
    logger.info("Start evaluation on {} dataset({} images).".format(dataset_name, len(dataset)))
    total_timer = Timer()
    inference_timer = Timer()
    total_timer.tic()
    predictions = compute_on_dataset(model, data_loader, device, inference_timer)
    # wait for all processes to complete before measuring the time
    synchronize()
    total_time = total_timer.toc()
    total_time_str = get_time_str(total_time)
    logger.info(
        "Total run time: {} ({} s / img per device, on {} devices)".format(
            total_time_str, total_time * num_devices / len(dataset), num_devices
        )
    )
    total_infer_time = get_time_str(inference_timer.total_time)
    logger.info(
        "Model inference time: {} ({} s / img per device, on {} devices)".format(
            total_infer_time,
            inference_timer.total_time * num_devices / len(dataset),
            num_devices,
        )
    )

    predictions = _accumulate_predictions_from_multiple_gpus(predictions)
    if not is_main_process():
        return

    if output_folder:
        torch.save(predictions, os.path.join(output_folder, "predictions.pth"))

    extra_args = dict(
        box_only=box_only,
        iou_types=iou_types,
        expected_results=expected_results,
        expected_results_sigma_tol=expected_results_sigma_tol,
    )

    return evaluate(dataset=dataset,
                    predictions=predictions,
                    output_folder=output_folder,
                    **extra_args) 
开发者ID:simaiden,项目名称:Clothing-Detection,代码行数:59,代码来源:inference.py

示例4: inference

# 需要导入模块: from maskrcnn_benchmark.data.datasets import evaluation [as 别名]
# 或者: from maskrcnn_benchmark.data.datasets.evaluation import evaluate [as 别名]
def inference(
        model,
        data_loader,
        dataset_name,
        iou_types=("bbox",),
        box_only=False,
        device="cuda",
        expected_results=(),
        expected_results_sigma_tol=4,
        output_folder=None,
):
    # convert to a torch.device for efficiency
    device = torch.device(device)
    num_devices = (
        torch.distributed.get_world_size()
        if torch.distributed.is_initialized()
        else 1
    )
    logger = logging.getLogger("maskrcnn_benchmark.inference")
    dataset = data_loader.dataset
    logger.info("Start evaluation on {} dataset({} images).".format(dataset_name, len(dataset)))
    start_time = time.time()
    predictions = compute_on_dataset(model, data_loader, device)
    # wait for all processes to complete before measuring the time
    synchronize()
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=total_time))
    logger.info(
        "Total inference time: {} ({} s / img per device, on {} devices)".format(
            total_time_str, total_time * num_devices / len(dataset), num_devices
        )
    )

    predictions = _accumulate_predictions_from_multiple_gpus(predictions)
    if not is_main_process():
        return

    if output_folder:
        torch.save(predictions, os.path.join(output_folder, "predictions.pth"))

    extra_args = dict(
        box_only=box_only,
        iou_types=iou_types,
        expected_results=expected_results,
        expected_results_sigma_tol=expected_results_sigma_tol,
    )
    return predictions

    # return evaluate(dataset=dataset,
    #                 predictions=predictions,
    #                 output_folder=output_folder,
    #                 **extra_args) 
开发者ID:HRNet,项目名称:HRNet-MaskRCNN-Benchmark,代码行数:54,代码来源:inference.py

示例5: inference

# 需要导入模块: from maskrcnn_benchmark.data.datasets import evaluation [as 别名]
# 或者: from maskrcnn_benchmark.data.datasets.evaluation import evaluate [as 别名]
def inference(
        model,
        data_loader,
        dataset_name,
        iou_types=("bbox",),
        box_only=False,
        bbox_aug=False,
        device="cuda",
        expected_results=(),
        expected_results_sigma_tol=4,
        output_folder=None,
):
    # convert to a torch.device for efficiency
    device = torch.device(device)
    num_devices = get_world_size()
    logger = logging.getLogger("maskrcnn_benchmark.inference")
    dataset = data_loader.dataset
    logger.info("Start evaluation on {} dataset({} images).".format(dataset_name, len(dataset)))
    total_timer = Timer()
    inference_timer = Timer()
    total_timer.tic()
    predictions = compute_on_dataset(model, data_loader, device, bbox_aug, inference_timer)
    # wait for all processes to complete before measuring the time
    synchronize()
    total_time = total_timer.toc()
    total_time_str = get_time_str(total_time)
    logger.info(
        "Total run time: {} ({} s / img per device, on {} devices)".format(
            total_time_str, total_time * num_devices / len(dataset), num_devices
        )
    )
    total_infer_time = get_time_str(inference_timer.total_time)
    logger.info(
        "Model inference time: {} ({} s / img per device, on {} devices)".format(
            total_infer_time,
            inference_timer.total_time * num_devices / len(dataset),
            num_devices,
        )
    )

    predictions = _accumulate_predictions_from_multiple_gpus(predictions)
    if not is_main_process():
        return

    if output_folder:
        torch.save(predictions, os.path.join(output_folder, "predictions.pth"))

    extra_args = dict(
        box_only=box_only,
        iou_types=iou_types,
        expected_results=expected_results,
        expected_results_sigma_tol=expected_results_sigma_tol,
    )

    return evaluate(dataset=dataset,
                    predictions=predictions,
                    output_folder=output_folder,
                    **extra_args) 
开发者ID:facebookresearch,项目名称:maskrcnn-benchmark,代码行数:60,代码来源:inference.py

示例6: inference

# 需要导入模块: from maskrcnn_benchmark.data.datasets import evaluation [as 别名]
# 或者: from maskrcnn_benchmark.data.datasets.evaluation import evaluate [as 别名]
def inference(
        model,
        data_loader,
        dataset_name,
        iou_types=("bbox",),
        box_only=False,
        device="cuda",
        expected_results=(),
        expected_results_sigma_tol=4,
        output_folder=None,
):
    # convert to a torch.device for efficiency
    device = torch.device(device)
    num_devices = get_world_size()
    logger = logging.getLogger("maskrcnn_benchmark.inference")
    dataset = data_loader.dataset
    logger.info("Start evaluation on {} dataset({} images).".format(dataset_name, len(dataset)))
    start_time = time.time()
    predictions = compute_on_dataset(model, data_loader, device)
    # wait for all processes to complete before measuring the time
    synchronize()
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=total_time))
    logger.info(
        "Total inference time: {} ({} s / img per device, on {} devices)".format(
            total_time_str, total_time * num_devices / len(dataset), num_devices
        )
    )

    predictions = _accumulate_predictions_from_multiple_gpus(predictions)
    if not is_main_process():
        return

    if output_folder:
        torch.save(predictions, os.path.join(output_folder, "predictions.pth"))

    extra_args = dict(
        box_only=box_only,
        iou_types=iou_types,
        expected_results=expected_results,
        expected_results_sigma_tol=expected_results_sigma_tol,
    )

    return evaluate(dataset=dataset,
                    predictions=predictions,
                    output_folder=output_folder,
                    **extra_args) 
开发者ID:Lausannen,项目名称:NAS-FCOS,代码行数:49,代码来源:inference.py


注:本文中的maskrcnn_benchmark.data.datasets.evaluation.evaluate方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。