当前位置: 首页>>代码示例>>Python>>正文


Python losses.maximum_mean_discrepancy方法代码示例

本文整理汇总了Python中losses.maximum_mean_discrepancy方法的典型用法代码示例。如果您正苦于以下问题:Python losses.maximum_mean_discrepancy方法的具体用法?Python losses.maximum_mean_discrepancy怎么用?Python losses.maximum_mean_discrepancy使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在losses的用法示例。


在下文中一共展示了losses.maximum_mean_discrepancy方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_mmd_name

# 需要导入模块: import losses [as 别名]
# 或者: from losses import maximum_mean_discrepancy [as 别名]
def test_mmd_name(self):
    with self.test_session():
      x = tf.random_uniform((2, 3), seed=1)
      kernel = partial(utils.gaussian_kernel_matrix, sigmas=tf.constant([1.]))
      loss = losses.maximum_mean_discrepancy(x, x, kernel)

      self.assertEquals(loss.op.name, 'MaximumMeanDiscrepancy/value') 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:9,代码来源:losses_test.py

示例2: test_mmd_is_zero_when_inputs_are_same

# 需要导入模块: import losses [as 别名]
# 或者: from losses import maximum_mean_discrepancy [as 别名]
def test_mmd_is_zero_when_inputs_are_same(self):
    with self.test_session():
      x = tf.random_uniform((2, 3), seed=1)
      kernel = partial(utils.gaussian_kernel_matrix, sigmas=tf.constant([1.]))
      self.assertEquals(0, losses.maximum_mean_discrepancy(x, x, kernel).eval()) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:7,代码来源:losses_test.py

示例3: test_fast_mmd_is_similar_to_slow_mmd

# 需要导入模块: import losses [as 别名]
# 或者: from losses import maximum_mean_discrepancy [as 别名]
def test_fast_mmd_is_similar_to_slow_mmd(self):
    with self.test_session():
      x = tf.constant(np.random.normal(size=(2, 3)), tf.float32)
      y = tf.constant(np.random.rand(2, 3), tf.float32)

      cost_old = MaximumMeanDiscrepancySlow(x, y, [1.]).eval()
      kernel = partial(utils.gaussian_kernel_matrix, sigmas=tf.constant([1.]))
      cost_new = losses.maximum_mean_discrepancy(x, y, kernel).eval()

      self.assertAlmostEqual(cost_old, cost_new, delta=1e-5) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:12,代码来源:losses_test.py

示例4: test_multiple_sigmas

# 需要导入模块: import losses [as 别名]
# 或者: from losses import maximum_mean_discrepancy [as 别名]
def test_multiple_sigmas(self):
    with self.test_session():
      x = tf.constant(np.random.normal(size=(2, 3)), tf.float32)
      y = tf.constant(np.random.rand(2, 3), tf.float32)

      sigmas = tf.constant([2., 5., 10, 20, 30])
      kernel = partial(utils.gaussian_kernel_matrix, sigmas=sigmas)
      cost_old = MaximumMeanDiscrepancySlow(x, y, [2., 5., 10, 20, 30]).eval()
      cost_new = losses.maximum_mean_discrepancy(x, y, kernel=kernel).eval()

      self.assertAlmostEqual(cost_old, cost_new, delta=1e-5) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:13,代码来源:losses_test.py

示例5: test_mmd_is_zero_when_distributions_are_same

# 需要导入模块: import losses [as 别名]
# 或者: from losses import maximum_mean_discrepancy [as 别名]
def test_mmd_is_zero_when_distributions_are_same(self):

    with self.test_session():
      x = tf.random_uniform((1000, 10), seed=1)
      y = tf.random_uniform((1000, 10), seed=3)

      kernel = partial(utils.gaussian_kernel_matrix, sigmas=tf.constant([100.]))
      loss = losses.maximum_mean_discrepancy(x, y, kernel=kernel).eval()

      self.assertAlmostEqual(0, loss, delta=1e-4) 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:12,代码来源:losses_test.py


注:本文中的losses.maximum_mean_discrepancy方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。