本文整理汇总了Python中logging.logger方法的典型用法代码示例。如果您正苦于以下问题:Python logging.logger方法的具体用法?Python logging.logger怎么用?Python logging.logger使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类logging
的用法示例。
在下文中一共展示了logging.logger方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _get_panoptes_logger
# 需要导入模块: import logging [as 别名]
# 或者: from logging import logger [as 别名]
def _get_panoptes_logger(self):
"""
Returns the logger to be used by the context
The method attempts to guess the name of the calling module based on introspection of the stack
Returns:
logger(logger): A Python logger subsystem logger
Raises:
PanoptesContextError: This exception is raised is any errors happen trying to instantiate the logger
"""
self.__logger.info(u'Attempting to get logger')
try:
module = get_calling_module_name()
logger = self.__rootLogger.getChild(module)
self.__logger.info(u'Got logger for module %s' % module)
return logger
except Exception as e:
raise PanoptesContextError(u'Could not get logger: %s' % str(e))
示例2: attach
# 需要导入模块: import logging [as 别名]
# 或者: from logging import logger [as 别名]
def attach(self, engine: Engine):
"""
Register a set of Ignite Event-Handlers to a specified Ignite engine.
Args:
engine: Ignite Engine, it can be a trainer, validator or evaluator.
"""
if self._name is None:
self.logger = engine.logger
if not engine.has_event_handler(self.iteration_completed, Events.ITERATION_COMPLETED):
engine.add_event_handler(Events.ITERATION_COMPLETED, self.iteration_completed)
if not engine.has_event_handler(self.epoch_completed, Events.EPOCH_COMPLETED):
engine.add_event_handler(Events.EPOCH_COMPLETED, self.epoch_completed)
if not engine.has_event_handler(self.exception_raised, Events.EXCEPTION_RAISED):
engine.add_event_handler(Events.EXCEPTION_RAISED, self.exception_raised)
示例3: wait_for_workers
# 需要导入模块: import logging [as 别名]
# 或者: from logging import logger [as 别名]
def wait_for_workers(self, min_n_workers=1):
"""
helper function to hold execution until some workers are active
Parameters
----------
min_n_workers: int
minimum number of workers present before the run starts
"""
self.logger.debug('wait_for_workers trying to get the condition')
with self.thread_cond:
while (self.dispatcher.number_of_workers() < min_n_workers):
self.logger.debug('HBMASTER: only %i worker(s) available, waiting for at least %i.'%(self.dispatcher.number_of_workers(), min_n_workers))
self.thread_cond.wait(1)
self.dispatcher.trigger_discover_worker()
self.logger.debug('Enough workers to start this run!')
示例4: job_callback
# 需要导入模块: import logging [as 别名]
# 或者: from logging import logger [as 别名]
def job_callback(self, job):
"""
method to be called when a job has finished
this will do some book keeping and call the user defined
new_result_callback if one was specified
"""
self.logger.debug('job_callback for %s started'%str(job.id))
with self.thread_cond:
self.logger.debug('job_callback for %s got condition'%str(job.id))
self.num_running_jobs -= 1
if not self.result_logger is None:
self.result_logger(job)
self.iterations[job.id[0]].register_result(job)
self.config_generator.new_result(job)
if self.num_running_jobs <= self.job_queue_sizes[0]:
self.logger.debug("HBMASTER: Trying to run another job!")
self.thread_cond.notify()
self.logger.debug('job_callback for %s finished'%str(job.id))
示例5: __init__
# 需要导入模块: import logging [as 别名]
# 或者: from logging import logger [as 别名]
def __init__(self, logger=None):
"""
Parameters
----------
directory: string
where the results are logged
logger: hpbandster.utils.result_logger_v??
the logger to store the data, defaults to v1
overwrite: bool
whether or not existing data will be overwritten
logger: logging.logger
for some debug output
"""
if logger is None:
self.logger=logging.getLogger('hpbandster')
else:
self.logger=logger
示例6: new_result
# 需要导入模块: import logging [as 别名]
# 或者: from logging import logger [as 别名]
def new_result(self, job, update_model=True):
"""
registers finished runs
Every time a run has finished, this function should be called
to register it with the result logger. If overwritten, make
sure to call this method from the base class to ensure proper
logging.
Parameters
----------
job: instance of hpbandster.distributed.dispatcher.Job
contains all necessary information about the job
update_model: boolean
determines whether a model inside the config_generator should be updated
"""
if not job.exception is None:
self.logger.warning("job {} failed with exception\n{}".format(job.id, job.exception))
示例7: _timer
# 需要导入模块: import logging [as 别名]
# 或者: from logging import logger [as 别名]
def _timer(name, _logger=None, level="info"):
"""
Output execution time of a function to the given logger level
Parameters
----------
name : str
How to name the timer (will be in the logs)
logger : logging.logger
The optional logger where to write
level : str
On which level to log the performance measurement
"""
start = tic()
_logger = _logger or logger
_logger.info("Starting %s", name)
yield
stop = tic()
delta = datetime.timedelta(seconds=stop - start)
_logger_level = getattr(_logger, level)
_logger_level("Finished %s in %s", name, delta) # nicer formatting for time.
示例8: _timed
# 需要导入模块: import logging [as 别名]
# 或者: from logging import logger [as 别名]
def _timed(_logger=None, level="info"):
"""
Output execution time of a function to the given logger level
level : str
On which level to log the performance measurement
Returns
-------
fun_wrapper : Callable
"""
def fun_wrapper(f):
@functools.wraps(f)
def wraps(*args, **kwargs):
with _timer(f.__name__, _logger=logger, level=level):
results = f(*args, **kwargs)
return results
return wraps
return fun_wrapper
示例9: exception_log
# 需要导入模块: import logging [as 别名]
# 或者: from logging import logger [as 别名]
def exception_log(logger, head_msg, ex, level=logging.ERROR):
"""Helper to dump exception in the logger
Parameters
----------
logger: logging.logger
the logger
head_msg: string
a human friendly message to prefix the exception stacktrace
ex: Exception
the exception
level: type
The wanted level (ERROR by default)
"""
logger.log(level, "%s:" % head_msg)
logger.log(level, "<br />".join(traceback.format_exception(etype=type(ex), value=ex, tb=ex.__traceback__)))
###############################################################################
# Callbacks
###############################################################################
示例10: _configure_ulog_bridge
# 需要导入模块: import logging [as 别名]
# 或者: from logging import logger [as 别名]
def _configure_ulog_bridge():
# Get the ulog entries of this process into a Python logging.logger
# This "ulog" logger has no log handler by default and should only
# be activated for debugging
ulog_logger = logging.getLogger("ulog")
ulog.enable_bridge(ulog_logger, forward=False)
示例11: logger
# 需要导入模块: import logging [as 别名]
# 或者: from logging import logger [as 别名]
def logger(self):
"""
A module-aware logger which will try and guess the right name for the calling module
Returns:
logging.logger
"""
return self.__logger
示例12: __init__
# 需要导入模块: import logging [as 别名]
# 或者: from logging import logger [as 别名]
def __init__(
self,
output_dir: str = "./",
filename: str = "predictions.csv",
overwrite: bool = True,
batch_transform: Callable = lambda x: x,
output_transform: Callable = lambda x: x,
name: Optional[str] = None,
):
"""
Args:
output_dir: output CSV file directory.
filename: name of the saved CSV file name.
overwrite: whether to overwriting existing CSV file content. If we are not overwriting,
then we check if the results have been previously saved, and load them to the prediction_dict.
batch_transform: a callable that is used to transform the
ignite.engine.batch into expected format to extract the meta_data dictionary.
output_transform: a callable that is used to transform the
ignite.engine.output into the form expected model prediction data.
The first dimension of this transform's output will be treated as the
batch dimension. Each item in the batch will be saved individually.
name: identifier of logging.logger to use, defaulting to `engine.logger`.
"""
self.saver = CSVSaver(output_dir, filename, overwrite)
self.batch_transform = batch_transform
self.output_transform = output_transform
self.logger = None if name is None else logging.getLogger(name)
self._name = name
示例13: attach
# 需要导入模块: import logging [as 别名]
# 或者: from logging import logger [as 别名]
def attach(self, engine: Engine):
if self._name is None:
self.logger = engine.logger
if not engine.has_event_handler(self, Events.ITERATION_COMPLETED):
engine.add_event_handler(Events.ITERATION_COMPLETED, self)
if not engine.has_event_handler(self.saver.finalize, Events.COMPLETED):
engine.add_event_handler(Events.COMPLETED, lambda engine: self.saver.finalize())
示例14: exception_raised
# 需要导入模块: import logging [as 别名]
# 或者: from logging import logger [as 别名]
def exception_raised(self, engine: Engine, e):
"""
Handler for train or validation/evaluation exception raised Event.
Print the exception information and traceback.
Args:
engine: Ignite Engine, it can be a trainer, validator or evaluator.
e (Exception): the exception caught in Ignite during engine.run().
"""
self.logger.exception(f"Exception: {e}")
# import traceback
# traceback.print_exc()
示例15: attach
# 需要导入模块: import logging [as 别名]
# 或者: from logging import logger [as 别名]
def attach(self, engine: Engine):
if self._name is None:
self.logger = engine.logger
if not engine.has_event_handler(self, Events.ITERATION_COMPLETED):
engine.add_event_handler(Events.ITERATION_COMPLETED, self)