当前位置: 首页>>代码示例>>Python>>正文


Python logger.AverageMeter方法代码示例

本文整理汇总了Python中logger.AverageMeter方法的典型用法代码示例。如果您正苦于以下问题:Python logger.AverageMeter方法的具体用法?Python logger.AverageMeter怎么用?Python logger.AverageMeter使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在logger的用法示例。


在下文中一共展示了logger.AverageMeter方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: import logger [as 别名]
# 或者: from logger import AverageMeter [as 别名]
def main():
    global args
    args = parser.parse_args()

    args.output_dir = Path(args.output_dir)
    args.gt_dir = Path(args.gt_dir)

    error_names = ['epe_total', 'outliers']
    errors = AverageMeter(i=len(error_names))

    for i in tqdm(range(args.N)):
        gt_flow_path = args.gt_dir.joinpath(str(i).zfill(6)+'_10.png')
        output_flow_path = args.output_dir.joinpath(str(i).zfill(6)+'_10.png')
        u_gt,v_gt,valid_gt = flow_io.flow_read_png(gt_flow_path)
        u_pred,v_pred,valid_pred = flow_io.flow_read_png(output_flow_path)

        _errors = compute_err(u_gt, v_gt, valid_gt, u_pred, v_pred, valid_pred)
        errors.update(_errors)


    print("Results")
    print("\t {:>10}, {:>10} ".format(*error_names))
    print("Errors \t {:10.4f}, {:10.4f}".format(*errors.avg)) 
开发者ID:anuragranj,项目名称:cc,代码行数:25,代码来源:evaluate_flow.py

示例2: validate

# 需要导入模块: import logger [as 别名]
# 或者: from logger import AverageMeter [as 别名]
def validate(val_loader, alice_net, bob_net, mod_net):
    global args
    accuracy = AverageMeter(i=3, precision=4)
    mod_count = AverageMeter()

    # switch to evaluate mode
    alice_net.eval()
    bob_net.eval()
    mod_net.eval()

    for i, (img, target) in enumerate(tqdm(val_loader)):
        img_var = Variable(img.cuda(), volatile=True)
        target_var = Variable(target.cuda(), volatile=True)

        pred_alice = alice_net(img_var)
        pred_bob = bob_net(img_var)
        pred_mod = F.sigmoid(mod_net(img_var))
        _ , pred_alice_label = torch.max(pred_alice.data, 1)
        _ , pred_bob_label = torch.max(pred_bob.data, 1)
        pred_label = (pred_mod.squeeze().data > 0.5).type_as(pred_alice_label) * pred_alice_label + (pred_mod.squeeze().data <= 0.5).type_as(pred_bob_label) * pred_bob_label

        total_accuracy = (pred_label.cpu() == target).sum().item() / img.size(0)
        alice_accuracy = (pred_alice_label.cpu() == target).sum().item() / img.size(0)
        bob_accuracy = (pred_bob_label.cpu() == target).sum().item() / img.size(0)
        accuracy.update([total_accuracy, alice_accuracy, bob_accuracy])
        mod_count.update((pred_mod.cpu().data > 0.5).sum().item() / img.size(0))

    return list(map(lambda x: 1-x, accuracy.avg)), ['Total', 'alice', 'bob'] , mod_count.avg 
开发者ID:anuragranj,项目名称:cc,代码行数:30,代码来源:mnist_eval.py

示例3: train

# 需要导入模块: import logger [as 别名]
# 或者: from logger import AverageMeter [as 别名]
def train(train_loader, model, criterion, optimizer, epoch, logger=None):

    # Switch to train mode
    model.train()

    batch_time = AverageMeter()
    losses = AverageMeter()
    accuracies = AverageMeter()

    # Start counting time
    end = time.time()

    for i, (im, cl) in enumerate(train_loader):
        if torch.cuda.is_available():
            im, cl = im.cuda(), cl.cuda()
        op = model(im)
        loss = criterion(op, cl)
        acc = utils.accuracy(op.data, cl.data, topk=(1,))
        losses.update(loss.item(), cl.size(0))
        accuracies.update(acc[0].item(), cl.size(0))
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        batch_time.update(time.time() - end)
        end = time.time()
        if (i + 1) % args.log_interval == 0:
            print('[Train] Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Accuracy {acc.val:.4f} ({acc.avg:.4f})\t'
                  .format(epoch + 1, i + 1, len(train_loader), batch_time=batch_time, loss=losses, acc=accuracies)) 
开发者ID:AnjanDutta,项目名称:sem-pcyc,代码行数:33,代码来源:train_image.py

示例4: validate

# 需要导入模块: import logger [as 别名]
# 或者: from logger import AverageMeter [as 别名]
def validate(valid_loader, model, criterion, epoch, logger=None):

    # Switch to train mode
    model.eval()

    batch_time = AverageMeter()
    losses = AverageMeter()
    accuracies = AverageMeter()

    # Start counting time
    end = time.time()

    for i, (im, cl) in enumerate(valid_loader):

        if torch.cuda.is_available():
            im, cl = im.cuda(), cl.cuda()

        # compute output
        op = model(im)
        loss = criterion(op, cl)
        acc = utils.accuracy(op.data, cl.data, topk=(1,))
        losses.update(loss.item(), cl.size(0))
        accuracies.update(acc[0].item(), cl.size(0))
        batch_time.update(time.time() - end)
        end = time.time()

        if (i + 1) % args.log_interval == 0:
            print('[Validation] Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Accuracy {acc.val:.4f} ({acc.avg:.4f})\t'
                  .format(epoch + 1, i + 1, len(valid_loader), batch_time=batch_time, loss=losses, acc=accuracies))

    return accuracies.avg 
开发者ID:AnjanDutta,项目名称:sem-pcyc,代码行数:36,代码来源:train_image.py

示例5: validate_with_gt

# 需要导入模块: import logger [as 别名]
# 或者: from logger import AverageMeter [as 别名]
def validate_with_gt(args, val_loader, disp_net, epoch, logger, tb_writer, sample_nb_to_log=3):
    global device
    batch_time = AverageMeter()
    error_names = ['abs_diff', 'abs_rel', 'sq_rel', 'a1', 'a2', 'a3']
    errors = AverageMeter(i=len(error_names))
    log_outputs = sample_nb_to_log > 0

    # switch to evaluate mode
    disp_net.eval()

    end = time.time()
    logger.valid_bar.update(0)
    for i, (tgt_img, depth) in enumerate(val_loader):
        tgt_img = tgt_img.to(device)
        depth = depth.to(device)

        # compute output
        output_disp = disp_net(tgt_img)
        output_depth = 1/output_disp[:,0]

        if log_outputs and i < sample_nb_to_log:
            if epoch == 0:
                tb_writer.add_image('val Input/{}'.format(i), tensor2array(tgt_img[0]), 0)
                depth_to_show = depth[0]
                tb_writer.add_image('val target Depth Normalized/{}'.format(i),
                                    tensor2array(depth_to_show, max_value=None),
                                    epoch)
                depth_to_show[depth_to_show == 0] = 1000
                disp_to_show = (1/depth_to_show).clamp(0,10)
                tb_writer.add_image('val target Disparity Normalized/{}'.format(i),
                                    tensor2array(disp_to_show, max_value=None, colormap='magma'),
                                    epoch)

            tb_writer.add_image('val Dispnet Output Normalized/{}'.format(i),
                                tensor2array(output_disp[0], max_value=None, colormap='magma'),
                                epoch)
            tb_writer.add_image('val Depth Output Normalized/{}'.format(i),
                                tensor2array(output_depth[0], max_value=None),
                                epoch)

        errors.update(compute_errors(depth, output_depth))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()
        logger.valid_bar.update(i+1)
        if i % args.print_freq == 0:
            logger.valid_writer.write('valid: Time {} Abs Error {:.4f} ({:.4f})'.format(batch_time, errors.val[0], errors.avg[0]))
    logger.valid_bar.update(len(val_loader))
    return errors.avg, error_names 
开发者ID:ClementPinard,项目名称:SfmLearner-Pytorch,代码行数:52,代码来源:train.py

示例6: adjust_shifts

# 需要导入模块: import logger [as 别名]
# 或者: from logger import AverageMeter [as 别名]
def adjust_shifts(args, train_set, adjust_loader, pose_exp_net, epoch, logger, tb_writer):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    new_shifts = AverageMeter(args.sequence_length-1)
    pose_exp_net.train()
    poses = np.zeros(((len(adjust_loader)-1) * args.batch_size * (args.sequence_length-1),6))

    mid_index = (args.sequence_length - 1)//2

    target_values = np.abs(np.arange(-mid_index, mid_index + 1)) * (args.target_displacement)
    target_values = np.concatenate([target_values[:mid_index], target_values[mid_index + 1:]])

    end = time.time()

    for i, (indices, tgt_img, ref_imgs, intrinsics, intrinsics_inv) in enumerate(adjust_loader):
        # measure data loading time
        data_time.update(time.time() - end)
        tgt_img = tgt_img.to(device)
        ref_imgs = [img.to(device) for img in ref_imgs]

        # compute output
        explainability_mask, pose_batch = pose_exp_net(tgt_img, ref_imgs)

        if i < len(adjust_loader)-1:
            step = args.batch_size*(args.sequence_length-1)
            poses[i * step:(i+1) * step] = pose_batch.cpu().reshape(-1,6).numpy()

        for index, pose in zip(indices, pose_batch):
            displacements = pose[:,:3].norm(p=2, dim=1).cpu().numpy()
            ratio = target_values / displacements

            train_set.reset_shifts(index, ratio[:mid_index], ratio[mid_index:])
            new_shifts.update(train_set.get_shifts(index))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        logger.train_bar.update(i)
        if i % args.print_freq == 0:
            logger.train_writer.write('Adjustement:'
                                      'Time {} Data {} shifts {}'.format(batch_time, data_time, new_shifts))

    prefix = 'train poses'
    coeffs_names = ['tx', 'ty', 'tz']
    if args.rotation_mode == 'euler':
        coeffs_names.extend(['rx', 'ry', 'rz'])
    elif args.rotation_mode == 'quat':
        coeffs_names.extend(['qx', 'qy', 'qz'])
    for i in range(poses.shape[1]):
        tb_writer.add_histogram('{} {}'.format(prefix, coeffs_names[i]), poses[:,i], epoch)

    return new_shifts.avg 
开发者ID:ClementPinard,项目名称:SfmLearner-Pytorch,代码行数:55,代码来源:train_flexible_shifts.py

示例7: main

# 需要导入模块: import logger [as 别名]
# 或者: from logger import AverageMeter [as 别名]
def main():
    global args
    args = parser.parse_args()
    normalize = custom_transforms.Normalize(mean=[0.5, 0.5, 0.5],
                                            std=[0.5, 0.5, 0.5])
    flow_loader_h, flow_loader_w = 256, 832
    valid_flow_transform = custom_transforms.Compose([custom_transforms.Scale(h=flow_loader_h, w=flow_loader_w),
                            custom_transforms.ArrayToTensor(), normalize])
    if args.dataset == "kitti2015":
        val_flow_set = ValidationFlow(root='/home/anuragr/datasets/kitti/kitti2015',
                                sequence_length=5, transform=valid_flow_transform)
    elif args.dataset == "kitti2012":
        val_flow_set = ValidationFlowKitti2012(root='/is/ps2/aranjan/AllFlowData/kitti/kitti2012',
                                sequence_length=5, transform=valid_flow_transform)

    val_flow_loader = torch.utils.data.DataLoader(val_flow_set, batch_size=1, shuffle=False,
        num_workers=2, pin_memory=True, drop_last=True)

    flow_net = getattr(models, args.flownet)(nlevels=args.nlevels).cuda()

    if args.pretrained_flow:
        print("=> using pre-trained weights from {}".format(args.pretrained_flow))
        weights = torch.load(args.pretrained_flow)
        flow_net.load_state_dict(weights['state_dict'])#, strict=False)

    flow_net = flow_net.cuda()
    flow_net.eval()
    error_names = ['epe_total', 'epe_non_rigid', 'epe_rigid', 'outliers']
    errors = AverageMeter(i=len(error_names))

    for i, (tgt_img, ref_imgs, intrinsics, intrinsics_inv, flow_gt, obj_map) in enumerate(tqdm(val_flow_loader)):
        tgt_img_var = Variable(tgt_img.cuda(), volatile=True)
        if args.dataset=="kitti2015":
            ref_imgs_var = [Variable(img.cuda(), volatile=True) for img in ref_imgs]
            ref_img_var = ref_imgs_var[1:3]
        elif args.dataset=="kitti2012":
            ref_img_var = Variable(ref_imgs.cuda(), volatile=True)

        flow_gt_var = Variable(flow_gt.cuda(), volatile=True)
        # compute output
        flow_fwd, flow_bwd, occ = flow_net(tgt_img_var, ref_img_var)
        #epe = compute_epe(gt=flow_gt_var, pred=flow_fwd)
        obj_map_gt_var = Variable(obj_map.cuda(), volatile=True)
        obj_map_gt_var_expanded = obj_map_gt_var.unsqueeze(1).type_as(flow_fwd)

        epe = compute_all_epes(flow_gt_var, flow_fwd, flow_fwd,  (1-obj_map_gt_var_expanded) )
        #print(i, epe)
        errors.update(epe)

    print("Averge EPE",errors.avg ) 
开发者ID:anuragranj,项目名称:cc,代码行数:52,代码来源:test_back2future.py

示例8: validate

# 需要导入模块: import logger [as 别名]
# 或者: from logger import AverageMeter [as 别名]
def validate(val_loader, alice_net, bob_net, mod_net, epoch, logger=None, output_writer=[]):
    global args
    batch_time = AverageMeter()
    accuracy = AverageMeter(i=3, precision=4)

    # switch to evaluate mode
    alice_net.eval()
    bob_net.eval()
    mod_net.eval()

    end = time.time()

    for i, (img, target) in enumerate(val_loader):
        img_var = Variable(img.cuda(), volatile=True)
        target_var = Variable(target.cuda(), volatile=True)

        pred_alice = alice_net(img_var)
        pred_bob = bob_net(img_var)
        pred_mod = F.sigmoid(mod_net(img_var))

        _ , pred_alice_label = torch.max(pred_alice.data, 1)
        _ , pred_bob_label = torch.max(pred_bob.data, 1)
        pred_label = (pred_mod.squeeze().data > 0.5).type_as(pred_alice_label) * pred_alice_label + (pred_mod.squeeze().data <= 0.5).type_as(pred_bob_label) * pred_bob_label

        total_accuracy = (pred_label.cpu() == target).sum() / img.size(0)
        alice_accuracy = (pred_alice_label.cpu() == target).sum() / img.size(0)
        bob_accuracy = (pred_bob_label.cpu() == target).sum() / img.size(0)

        accuracy.update([total_accuracy, alice_accuracy, bob_accuracy])


        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()
        if args.log_terminal:
            logger.valid_bar.update(i)
            if i % args.print_freq == 0:
                logger.valid_writer.write('valid: Time {} Accuray {}'.format(batch_time, accuracy))

    if args.log_output:
        output_writer.add_scalar('accuracy_alice', accuracy.avg[1], epoch)
        output_writer.add_scalar('accuracy_bob', accuracy.avg[2], epoch)
        output_writer.add_scalar('accuracy_total', accuracy.avg[0], epoch)

    if args.log_terminal:
        logger.valid_bar.update(len(val_loader))

    return list(map(lambda x: 1-x, accuracy.avg)), ['Total loss', 'alice loss', 'bob loss'] 
开发者ID:anuragranj,项目名称:cc,代码行数:50,代码来源:mnist.py

示例9: validate_depth_with_gt

# 需要导入模块: import logger [as 别名]
# 或者: from logger import AverageMeter [as 别名]
def validate_depth_with_gt(val_loader, disp_net, epoch, logger, output_writers=[]):
    global args
    batch_time = AverageMeter()
    error_names = ['abs_diff', 'abs_rel', 'sq_rel', 'a1', 'a2', 'a3']
    errors = AverageMeter(i=len(error_names))
    log_outputs = len(output_writers) > 0

    # switch to evaluate mode
    disp_net.eval()

    end = time.time()

    for i, (tgt_img, depth) in enumerate(val_loader):
        tgt_img_var = Variable(tgt_img.cuda(), volatile=True)
        output_disp = disp_net(tgt_img_var)
        if args.spatial_normalize:
            output_disp = spatial_normalize(output_disp)

        output_depth = 1/output_disp

        depth = depth.cuda()

        # compute output

        if log_outputs and i % 100 == 0 and i/100 < len(output_writers):
            index = int(i//100)
            if epoch == 0:
                output_writers[index].add_image('val Input', tensor2array(tgt_img[0]), 0)
                depth_to_show = depth[0].cpu()
                output_writers[index].add_image('val target Depth', tensor2array(depth_to_show, max_value=10), epoch)
                depth_to_show[depth_to_show == 0] = 1000
                disp_to_show = (1/depth_to_show).clamp(0,10)
                output_writers[index].add_image('val target Disparity Normalized', tensor2array(disp_to_show, max_value=None, colormap='bone'), epoch)

            output_writers[index].add_image('val Dispnet Output Normalized', tensor2array(output_disp.data[0].cpu(), max_value=None, colormap='bone'), epoch)
            output_writers[index].add_image('val Depth Output', tensor2array(output_depth.data[0].cpu(), max_value=10), epoch)

        errors.update(compute_errors(depth, output_depth.data.squeeze(1)))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()
        if args.log_terminal:
            logger.valid_bar.update(i)
            if i % args.print_freq == 0:
                logger.valid_writer.write('valid: Time {} Abs Error {:.4f} ({:.4f})'.format(batch_time, errors.val[0], errors.avg[0]))
    if args.log_terminal:
        logger.valid_bar.update(len(val_loader))
    return errors.avg, error_names 
开发者ID:anuragranj,项目名称:cc,代码行数:51,代码来源:train.py

示例10: train

# 需要导入模块: import logger [as 别名]
# 或者: from logger import AverageMeter [as 别名]
def train(train_loader, sem_pcyc_model, epoch, args):

    # Switch to train mode
    sem_pcyc_model.train()

    batch_time = AverageMeter()
    losses_gen_adv = AverageMeter()
    losses_gen_cyc = AverageMeter()
    losses_gen_cls = AverageMeter()
    losses_gen_reg = AverageMeter()
    losses_gen = AverageMeter()
    losses_disc_se = AverageMeter()
    losses_disc_sk = AverageMeter()
    losses_disc_im = AverageMeter()
    losses_disc = AverageMeter()
    losses_aut_enc = AverageMeter()

    # Start counting time
    time_start = time.time()

    for i, (sk, im, cl) in enumerate(train_loader):

        # Transfer sk and im to cuda
        if torch.cuda.is_available():
            sk, im = sk.cuda(), im.cuda()

        # Optimize parameters
        loss = sem_pcyc_model.optimize_params(sk, im, cl)

        # Store losses for visualization
        losses_aut_enc.update(loss['aut_enc'].item(), sk.size(0))
        losses_gen_adv.update(loss['gen_adv'].item(), sk.size(0))
        losses_gen_cyc.update(loss['gen_cyc'].item(), sk.size(0))
        losses_gen_cls.update(loss['gen_cls'].item(), sk.size(0))
        losses_gen_reg.update(loss['gen_reg'].item(), sk.size(0))
        losses_gen.update(loss['gen'].item(), sk.size(0))
        losses_disc_se.update(loss['disc_se'].item(), sk.size(0))
        losses_disc_sk.update(loss['disc_sk'].item(), sk.size(0))
        losses_disc_im.update(loss['disc_im'].item(), sk.size(0))
        losses_disc.update(loss['disc'].item(), sk.size(0))

        # time
        time_end = time.time()
        batch_time.update(time_end - time_start)
        time_start = time_end

        if (i + 1) % args.log_interval == 0:
            print('[Train] Epoch: [{0}][{1}/{2}]\t'
                  'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                  'Gen. Loss {loss_gen.val:.4f} ({loss_gen.avg:.4f})\t'
                  'Disc. Loss {loss_disc.val:.4f} ({loss_disc.avg:.4f})\t'
                  .format(epoch + 1, i + 1, len(train_loader), batch_time=batch_time, loss_gen=losses_gen,
                          loss_disc=losses_disc))

    losses = {'aut_enc': losses_aut_enc, 'gen_adv': losses_gen_adv, 'gen_cyc': losses_gen_cyc, 'gen_cls':
        losses_gen_cls, 'gen_reg': losses_gen_reg, 'gen': losses_gen, 'disc_se': losses_disc_se, 'disc_sk':
        losses_disc_sk, 'disc_im': losses_disc_im, 'disc': losses_disc}

    return losses 
开发者ID:AnjanDutta,项目名称:sem-pcyc,代码行数:61,代码来源:train.py

示例11: train

# 需要导入模块: import logger [as 别名]
# 或者: from logger import AverageMeter [as 别名]
def train(epoch, data_loader, model, criterion, optimizer, args):
  # switch to train mode
  model.train()

  # average meters to record the training statistics
  losses = AverageMeter()
  losses_dict = dict()
  losses_dict['ranking_loss'] = AverageMeter()
  if args.div_weight > 0:
    losses_dict['div_loss'] = AverageMeter()
  if args.mmd_weight > 0:
    losses_dict['mmd_loss'] = AverageMeter()

  for itr, data in enumerate(data_loader):
    img, txt, txt_len, _ = data
    if torch.cuda.is_available():
      img, txt, txt_len = img.cuda(), txt.cuda(), txt_len.cuda()

    # Forward pass and compute loss; _a: attention map, _r: residuals
    img_emb, txt_emb, img_a, txt_a, img_r, txt_r = model.forward(img, txt, txt_len)

    # Compute loss and update statstics
    loss, loss_dict = criterion(img_emb, txt_emb, img_r, txt_r)
    losses.update(loss.item())
    for key, val in loss_dict.items():
      losses_dict[key].update(val.item())

    # Backprop
    optimizer.zero_grad()
    loss.backward()
    if args.grad_clip > 0:
      nn.utils.clip_grad.clip_grad_norm_(model.parameters(), args.grad_clip)
    optimizer.step()

    # Print log info
    if itr > 0 and (itr % args.log_step == 0 or itr + 1 == len(data_loader)):
      log_msg = 'loss: %.4f (%.4f)' %(losses.val, losses.avg)
      for key, val in losses_dict.items():
        log_msg += ', %s: %.4f, (%.4f)' %(key.replace('_loss',''), val.val, val.avg)
      n = int(math.ceil(math.log(len(data_loader) + 1, 10)))
      logging.info('[%d][%*d/%d] %s' %(epoch, n, itr, len(data_loader), log_msg))

  log_msg = 'loss: %.4f' %(losses.avg)
  for key, val in losses_dict.items():
    log_msg += ', %s: %.4f' %(key.replace('_loss',''), val.avg)
  exp_name = args.logger_name.split('/')[-1]
  lock_and_write_to_file(args.log_file, '[%s][%d] %s' %(exp_name, epoch, log_msg))

  del img_emb, txt_emb, img_a, txt_a, img_r, txt_r, loss
  return losses.avg 
开发者ID:yalesong,项目名称:pvse,代码行数:52,代码来源:train.py

示例12: validate_with_gt

# 需要导入模块: import logger [as 别名]
# 或者: from logger import AverageMeter [as 别名]
def validate_with_gt(args, val_loader, dpsnet, epoch, output_writers=[]):
    batch_time = AverageMeter()
    error_names = ['abs_rel', 'abs_diff', 'sq_rel', 'a1', 'a2', 'a3']
    errors = AverageMeter(i=len(error_names))
    log_outputs = len(output_writers) > 0

    # switch to evaluate mode
    dpsnet.eval()

    end = time.time()
    with torch.no_grad():
        for i, (tgt_img, ref_imgs, ref_poses, intrinsics, intrinsics_inv, tgt_depth) in enumerate(val_loader):
            tgt_img_var = Variable(tgt_img.cuda())
            ref_imgs_var = [Variable(img.cuda()) for img in ref_imgs]
            ref_poses_var = [Variable(pose.cuda()) for pose in ref_poses]
            intrinsics_var = Variable(intrinsics.cuda())
            intrinsics_inv_var = Variable(intrinsics_inv.cuda())
            tgt_depth_var = Variable(tgt_depth.cuda())

            pose = torch.cat(ref_poses_var,1)

            output_depth = dpsnet(tgt_img_var, ref_imgs_var, pose, intrinsics_var, intrinsics_inv_var)
            output_disp = args.nlabel*args.mindepth/(output_depth)

            mask = (tgt_depth <= args.nlabel*args.mindepth) & (tgt_depth >= args.mindepth) & (tgt_depth == tgt_depth)

            output = torch.squeeze(output_depth.data.cpu(),1)

            if log_outputs and i % 100 == 0 and i/100 < len(output_writers):
                index = int(i//100)
                if epoch == 0:
                    output_writers[index].add_image('val Input', tensor2array(tgt_img[0]), 0)
                    depth_to_show = tgt_depth_var.data[0].cpu()
                    depth_to_show[depth_to_show > args.nlabel*args.mindepth] = args.nlabel*args.mindepth
                    disp_to_show = (args.nlabel*args.mindepth/depth_to_show)
                    disp_to_show[disp_to_show > args.nlabel] = 0

                    output_writers[index].add_image('val target Disparity Normalized', tensor2array(disp_to_show, max_value=args.nlabel, colormap='bone'), epoch)
                    output_writers[index].add_image('val target Depth Normalized', tensor2array(depth_to_show, max_value=args.nlabel*args.mindepth*0.3), epoch)

                output_writers[index].add_image('val Dispnet Output Normalized', tensor2array(output_disp.data[0].cpu(), max_value=args.nlabel, colormap='bone'), epoch)
                output_writers[index].add_image('val Depth Output', tensor2array(output_depth.data[0].cpu(), max_value=args.nlabel*args.mindepth*0.3), epoch)

            errors.update(compute_errors_train(tgt_depth, output, mask))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()
            if i % args.print_freq == 0:
                print('valid: Time {} Abs Error {:.4f} ({:.4f})'.format(batch_time, errors.val[0], errors.avg[0]))

    return errors.avg, error_names 
开发者ID:sunghoonim,项目名称:DPSNet,代码行数:54,代码来源:train.py

示例13: validate_without_gt

# 需要导入模块: import logger [as 别名]
# 或者: from logger import AverageMeter [as 别名]
def validate_without_gt(args, val_loader, disp_net, pose_net, epoch, logger, output_writers=[]):
    global device
    batch_time = AverageMeter()
    losses = AverageMeter(i=4, precision=4)
    log_outputs = len(output_writers) > 0

    # switch to evaluate mode
    disp_net.eval()
    pose_net.eval()

    end = time.time()
    logger.valid_bar.update(0)
    for i, (tgt_img, ref_imgs, intrinsics, intrinsics_inv) in enumerate(val_loader):
        tgt_img = tgt_img.to(device)
        ref_imgs = [img.to(device) for img in ref_imgs]
        intrinsics = intrinsics.to(device)
        intrinsics_inv = intrinsics_inv.to(device)

        # compute output
        tgt_depth = [1 / disp_net(tgt_img)]
        ref_depths = []
        for ref_img in ref_imgs:
            ref_depth = [1 / disp_net(ref_img)]
            ref_depths.append(ref_depth)

        if log_outputs and i < len(output_writers):
            if epoch == 0:
                output_writers[i].add_image('val Input', tensor2array(tgt_img[0]), 0)

            output_writers[i].add_image('val Dispnet Output Normalized',
                                        tensor2array(1/tgt_depth[0][0], max_value=None, colormap='magma'),
                                        epoch)
            output_writers[i].add_image('val Depth Output',
                                        tensor2array(tgt_depth[0][0], max_value=10),
                                        epoch)

        poses, poses_inv = compute_pose_with_inv(pose_net, tgt_img, ref_imgs)

        loss_1, loss_3 = compute_photo_and_geometry_loss(tgt_img, ref_imgs, intrinsics, tgt_depth, ref_depths,
                                                         poses, poses_inv, args.num_scales, args.with_ssim,
                                                         args.with_mask, False, args.padding_mode)

        loss_2 = compute_smooth_loss(tgt_depth, tgt_img, ref_depths, ref_imgs)

        loss_1 = loss_1.item()
        loss_2 = loss_2.item()
        loss_3 = loss_3.item()

        loss = loss_1
        losses.update([loss, loss_1, loss_2, loss_3])

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()
        logger.valid_bar.update(i+1)
        if i % args.print_freq == 0:
            logger.valid_writer.write('valid: Time {} Loss {}'.format(batch_time, losses))

    logger.valid_bar.update(len(val_loader))
    return losses.avg, ['Total loss', 'Photo loss', 'Smooth loss', 'Consistency loss'] 
开发者ID:JiawangBian,项目名称:SC-SfMLearner-Release,代码行数:62,代码来源:train.py

示例14: validate_with_gt

# 需要导入模块: import logger [as 别名]
# 或者: from logger import AverageMeter [as 别名]
def validate_with_gt(args, val_loader, disp_net, epoch, logger, output_writers=[]):
    global device
    batch_time = AverageMeter()
    error_names = ['abs_diff', 'abs_rel', 'sq_rel', 'a1', 'a2', 'a3']
    errors = AverageMeter(i=len(error_names))
    log_outputs = len(output_writers) > 0

    # switch to evaluate mode
    disp_net.eval()

    end = time.time()
    logger.valid_bar.update(0)
    for i, (tgt_img, depth) in enumerate(val_loader):
        tgt_img = tgt_img.to(device)
        depth = depth.to(device)

        # check gt
        if depth.nelement() == 0:
            continue

        # compute output
        output_disp = disp_net(tgt_img)
        output_depth = 1/output_disp[:, 0]

        if log_outputs and i < len(output_writers):
            if epoch == 0:
                output_writers[i].add_image('val Input', tensor2array(tgt_img[0]), 0)
                depth_to_show = depth[0]
                output_writers[i].add_image('val target Depth',
                                            tensor2array(depth_to_show, max_value=10),
                                            epoch)
                depth_to_show[depth_to_show == 0] = 1000
                disp_to_show = (1/depth_to_show).clamp(0, 10)
                output_writers[i].add_image('val target Disparity Normalized',
                                            tensor2array(disp_to_show, max_value=None, colormap='magma'),
                                            epoch)

            output_writers[i].add_image('val Dispnet Output Normalized',
                                        tensor2array(output_disp[0], max_value=None, colormap='magma'),
                                        epoch)
            output_writers[i].add_image('val Depth Output',
                                        tensor2array(output_depth[0], max_value=10),
                                        epoch)

        if depth.nelement() != output_depth.nelement():
            b, h, w = depth.size()
            output_depth = torch.nn.functional.interpolate(output_depth.unsqueeze(1), [h, w]).squeeze(1)

        errors.update(compute_errors(depth, output_depth, args.dataset))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()
        logger.valid_bar.update(i+1)
        if i % args.print_freq == 0:
            logger.valid_writer.write('valid: Time {} Abs Error {:.4f} ({:.4f})'.format(batch_time, errors.val[0], errors.avg[0]))
    logger.valid_bar.update(len(val_loader))
    return errors.avg, error_names 
开发者ID:JiawangBian,项目名称:SC-SfMLearner-Release,代码行数:60,代码来源:train.py


注:本文中的logger.AverageMeter方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。