当前位置: 首页>>代码示例>>Python>>正文


Python load_data.load_data方法代码示例

本文整理汇总了Python中load_data.load_data方法的典型用法代码示例。如果您正苦于以下问题:Python load_data.load_data方法的具体用法?Python load_data.load_data怎么用?Python load_data.load_data使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在load_data的用法示例。


在下文中一共展示了load_data.load_data方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: import load_data [as 别名]
# 或者: from load_data import load_data [as 别名]
def main():
    data_path = "./Data/GasPrice.csv"
    P = 12  #sequence length
    step = 1 #ahead predict steps

    X_train,Y_train,X_test,Y_test,data_df_combined_clean = load_data(data_path,P=P,step=step)
    print(X_train.shape)
    print(Y_train.shape)
    
    model = Wavelet_LSTM(P,32,1)
    model = model.double()
    train(model,X_train,Y_train,epochs=20)
    test(model,X_test,Y_test,data_df_combined_clean) 
开发者ID:yakouyang,项目名称:Multilevel_Wavelet_Decomposition_Network_Pytorch,代码行数:15,代码来源:main.py

示例2: data

# 需要导入模块: import load_data [as 别名]
# 或者: from load_data import load_data [as 别名]
def data(name, mode='default', sep=',', delimiter=None, header='infer'):

    '''Function for loading one of the Autonomio dataset.

    OPTIONS: Either set mode to 'file' or use name without mode parameter.

    FILENAMES:

    'election_in_twitter'
     Dataset consisting of 10 minute samples of 80 million tweets.

     'tweet_sentiment'
     Dataset with tweet text classified for sentiment using NLTK Vader.

    'sites_category_and_vec'
     4,000 sites with word vectors and 5 categories.

    'programmatic_ad_fraud'
     Data from both buy and sell side and over 10 other sources.

    'parties_and_employment'
     9 years of monthly poll and unemployment numbers.

    'random_tweets'
     20,000 tweets main intended for.

    '''

    out = load_data(name, mode, sep, delimiter, header)

    return out 
开发者ID:autonomio,项目名称:autonomio,代码行数:33,代码来源:commands.py

示例3: build_model

# 需要导入模块: import load_data [as 别名]
# 或者: from load_data import load_data [as 别名]
def build_model(self, config, train):
        
        if train:
            tfrecord_list = glob(os.path.join(config.dataset, '**', '*.tfrecords'), recursive=True)
            assert (tfrecord_list)
            shuffle(tfrecord_list)
            print('\n\n====================\ntfrecords list:')
            [print(f) for f in tfrecord_list]
            print('====================\n\n')
            
            with tf.device('/cpu:0'):
                filename_queue = tf.train.string_input_producer(tfrecord_list)
                self.in_LDRs, self.in_HDRs, self.ref_LDRs, self.ref_HDR, _, _ = load_data(filename_queue, config)

            self.G_HDR = self.generator(self.in_LDRs,self.in_HDRs, train=train)
            self.G_tonemapped = tonemap(self.G_HDR)
            self.G_sum = tf.summary.image("G", self.G_tonemapped)
            
            # l2 loss
            self.g_loss = tf.reduce_mean((self.G_tonemapped - tonemap(self.ref_HDR))**2) # after tonemapping
            self.g_loss_sum = tf.summary.scalar("g_loss", self.g_loss)
            
            t_vars = tf.trainable_variables()
            self.g_vars = [var for var in t_vars if 'g_' in var.name]

            with tf.device('/cpu:0'):
                sample_tfrecord_list = glob(os.path.join(
                    './dataset/tf_records', '**', '*.tfrecords'), recursive=True)
                shuffle(sample_tfrecord_list)
                filename_queue_sample = tf.train.string_input_producer(sample_tfrecord_list)
                self.in_LDRs_sample, self.in_HDRs_sample, self.ref_LDRs_sample, self.ref_HDR_sample, _, _ = \
                    load_data(filename_queue_sample, config)
            
            self.sampler_HDR = self.generator(self.in_LDRs_sample, self.in_HDRs_sample, train=False, reuse = True)
            self.sampler_tonemapped = tonemap(self.sampler_HDR)

        # testing
        else:
            self.in_LDRs_sample = tf.placeholder(
                tf.float32, [self.batch_size, config.test_h, config.test_w, self.c_dim*self.num_shots], name='input_LDR_sample')
            self.in_HDRs_sample = tf.placeholder(
                tf.float32, [self.batch_size, config.test_h, config.test_w, self.c_dim*self.num_shots], name='input_HDR_sample')
            
            self.sampler_HDR = self.generator(self.in_LDRs_sample, self.in_HDRs_sample, train=False, free_size=True)
            self.sampler_tonemapped = tonemap(self.sampler_HDR)

        self.saver = tf.train.Saver(max_to_keep=50) 
开发者ID:elliottwu,项目名称:DeepHDR,代码行数:49,代码来源:model.py


注:本文中的load_data.load_data方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。