当前位置: 首页>>代码示例>>Python>>正文


Python lmfit.Parameters方法代码示例

本文整理汇总了Python中lmfit.Parameters方法的典型用法代码示例。如果您正苦于以下问题:Python lmfit.Parameters方法的具体用法?Python lmfit.Parameters怎么用?Python lmfit.Parameters使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在lmfit的用法示例。


在下文中一共展示了lmfit.Parameters方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: extract_strategy

# 需要导入模块: import lmfit [as 别名]
# 或者: from lmfit import Parameters [as 别名]
def extract_strategy(param, name):
    """
    Extract given strategy from param dict.

    Parameters
    ----------
    param : dict
        saving all parameters
    name : str
        strategy name

    Returns
    -------
    dict :
        with given strategy as value
    """
    param_new = copy.deepcopy(param)
    return {k: v[name] for k, v in six.iteritems(param_new)
            if k != 'non_fitting_values'} 
开发者ID:NSLS-II,项目名称:PyXRF,代码行数:21,代码来源:fit_spectrum.py

示例2: cal_r2

# 需要导入模块: import lmfit [as 别名]
# 或者: from lmfit import Parameters [as 别名]
def cal_r2(y, y_cal):
    """
    Calculate r2 statistics.
    Parameters
    ----------
    y : array
        exp data
    y_cal : array
        fitted data
    Returns
    -------
    float
    """
    sse = np.sum((y-y_cal)**2)
    sst = np.sum((y - np.mean(y))**2)
    return 1-sse/sst 
开发者ID:NSLS-II,项目名称:PyXRF,代码行数:18,代码来源:fit_spectrum.py

示例3: index_peaks

# 需要导入模块: import lmfit [as 别名]
# 或者: from lmfit import Parameters [as 别名]
def index_peaks(self, tolerance=0.1, *args, **kwargs):
        """Assigns hkl indices to peaks in the diffraction profile.

        Parameters
        ----------
        tolerance : float
            The n orientations with the highest correlation values are returned.
        keys : list
            If more than one phase present in library it is recommended that
            these are submitted. This allows a mapping from the number to the
            phase.  For example, keys = ['si','ga'] will have an output with 0
            for 'si' and 1 for 'ga'.
        *args : arguments
            Arguments passed to the map() function.
        **kwargs : arguments
            Keyword arguments passed to the map() function.

        Returns
        -------
        matching_results : ProfileIndexation

        """
        return index_magnitudes(np.array(self.magnitudes), self.simulation, tolerance) 
开发者ID:pyxem,项目名称:pyxem,代码行数:25,代码来源:indexation_generator.py

示例4: Cmatrix

# 需要导入模块: import lmfit [as 别名]
# 或者: from lmfit import Parameters [as 别名]
def Cmatrix(x, y, sx, sy, theta):
    """
    Construct a correlation matrix corresponding to the data.
    The matrix assumes a gaussian correlation function.

    Parameters
    ----------
    x, y : array-like
        locations at which to evaluate the correlation matirx
    sx, sy : float
        major/minor axes of the gaussian correlation function (sigmas)

    theta : float
        position angle of the gaussian correlation function (degrees)

    Returns
    -------
    data : array-like
        The C-matrix.
    """
    C = np.vstack([elliptical_gaussian(x, y, 1, i, j, sx, sy, theta) for i, j in zip(x, y)])
    return C 
开发者ID:PaulHancock,项目名称:Aegean,代码行数:24,代码来源:fitting.py

示例5: Bmatrix

# 需要导入模块: import lmfit [as 别名]
# 或者: from lmfit import Parameters [as 别名]
def Bmatrix(C):
    """
    Calculate a matrix which is effectively the square root of the correlation matrix C


    Parameters
    ----------
    C : 2d array
        A covariance matrix

    Returns
    -------
    B : 2d array
        A matrix B such the B.dot(B') = inv(C)
    """
    # this version of finding the square root of the inverse matrix
    # suggested by Cath Trott
    L, Q = eigh(C)
    # force very small eigenvalues to have some minimum non-zero value
    minL = 1e-9*L[-1]
    L[L < minL] = minL
    S = np.diag(1 / np.sqrt(L))
    B = Q.dot(S)
    return B 
开发者ID:PaulHancock,项目名称:Aegean,代码行数:26,代码来源:fitting.py

示例6: save_image

# 需要导入模块: import lmfit [as 别名]
# 或者: from lmfit import Parameters [as 别名]
def save_image(self, outname):
        """
        Save the image data.
        This is probably only useful if the image data has been blanked.

        Parameters
        ----------
        outname : str
            Name for the output file.
        """
        hdu = self.global_data.img.hdu
        hdu.data = self.global_data.img._pixels
        hdu.header["ORIGIN"] = "Aegean {0}-({1})".format(__version__, __date__)
        # delete some axes that we aren't going to need
        for c in ['CRPIX3', 'CRPIX4', 'CDELT3', 'CDELT4', 'CRVAL3', 'CRVAL4', 'CTYPE3', 'CTYPE4']:
            if c in hdu.header:
                del hdu.header[c]
        hdu.writeto(outname, overwrite=True)
        self.log.info("Wrote {0}".format(outname))
        return 
开发者ID:PaulHancock,项目名称:Aegean,代码行数:22,代码来源:source_finder.py

示例7: _fit_islands

# 需要导入模块: import lmfit [as 别名]
# 或者: from lmfit import Parameters [as 别名]
def _fit_islands(self, islands):
        """
        Execute fitting on a list of islands
        This function just wraps around fit_island, so that when we do multiprocesing
        a single process will fit multiple islands before returning results.


        Parameters
        ----------
        islands : list of :class:`AegeanTools.models.IslandFittingData`
            The islands to be fit.

        Returns
        -------
        sources : list
            The sources that were fit.
        """
        self.log.debug("Fitting group of {0} islands".format(len(islands)))
        sources = []
        for island in islands:
            res = self._fit_island(island)
            sources.extend(res)
        return sources 
开发者ID:PaulHancock,项目名称:Aegean,代码行数:25,代码来源:source_finder.py

示例8: fix_shape

# 需要导入模块: import lmfit [as 别名]
# 或者: from lmfit import Parameters [as 别名]
def fix_shape(source):
    """
    Ensure that a>=b for a given source object.
    If a<b then swap a/b and increment pa by 90.
    err_a/err_b are also swapped as needed.

    Parameters
    ----------
    source : object
        any object with a/b/pa/err_a/err_b properties

    """
    if source.a < source.b:
        source.a, source.b = source.b, source.a
        source.err_a, source.err_b = source.err_b, source.err_a
        source.pa += 90
    return 
开发者ID:PaulHancock,项目名称:Aegean,代码行数:19,代码来源:source_finder.py

示例9: theta_limit

# 需要导入模块: import lmfit [as 别名]
# 或者: from lmfit import Parameters [as 别名]
def theta_limit(theta):
    """
    Angle theta is periodic with period pi.
    Constrain theta such that -pi/2<theta<=pi/2.

    Parameters
    ----------
    theta : float
        Input angle.

    Returns
    -------
    theta : float
        Rotate angle.
    """
    while theta <= -1 * np.pi / 2:
        theta += np.pi
    while theta > np.pi / 2:
        theta -= np.pi
    return theta 
开发者ID:PaulHancock,项目名称:Aegean,代码行数:22,代码来源:source_finder.py

示例10: nena

# 需要导入模块: import lmfit [as 别名]
# 或者: from lmfit import Parameters [as 别名]
def nena(locs, info, callback=None):
    bin_centers, dnfl_ = next_frame_neighbor_distance_histogram(locs, callback)

    def func(d, a, s, ac, dc, sc):
        f = a * (d / s ** 2) * _np.exp(-0.5 * d ** 2 / s ** 2)
        fc = (
            ac
            * (d / sc ** 2)
            * _np.exp(-0.5 * (d ** 2 + dc ** 2) / sc ** 2)
            * _iv(0, d * dc / sc)
        )
        return f + fc

    pdf_model = _lmfit.Model(func)
    params = _lmfit.Parameters()
    area = _np.trapz(dnfl_, bin_centers)
    median_lp = _np.mean([_np.median(locs.lpx), _np.median(locs.lpy)])
    params.add("a", value=area / 2, min=0)
    params.add("s", value=median_lp, min=0)
    params.add("ac", value=area / 2, min=0)
    params.add("dc", value=2 * median_lp, min=0)
    params.add("sc", value=median_lp, min=0)
    result = pdf_model.fit(dnfl_, params, d=bin_centers)
    return result, result.best_values["s"] 
开发者ID:jungmannlab,项目名称:picasso,代码行数:26,代码来源:postprocess.py

示例11: calibrate

# 需要导入模块: import lmfit [as 别名]
# 或者: from lmfit import Parameters [as 别名]
def calibrate(cls, xs: tuple, t: float, parameters: [Parameters, tuple]) -> tuple:
        """
        SIR model derivatives at t.

        :param xs: variables that we are solving for, i.e. [S]usceptible, [I]nfected, [R]emoved
        :param t: time parameter, inactive for this model
        :param parameters: parameters of the model (not including initial conditions), i.e. beta, gamma, N
        :return: tuple, the derivatives dSdt, dIdt, dRdt of each of the S, I, R variables
        """
        s, i, r = xs

        if isinstance(parameters, Parameters):
            beta = parameters['beta'].value
            gamma = parameters['gamma'].value
            N = parameters['N'].value
        elif isinstance(parameters, tuple):
            beta, gamma, N = parameters
        else:
            raise ValueError("Cannot recognize parameter input")

        dSdt = - beta * s * i / N
        dIdt = beta * s * i / N - gamma * i
        dRdt = gamma * i

        return dSdt, dIdt, dRdt 
开发者ID:goldmansachs,项目名称:gs-quant,代码行数:27,代码来源:epidemiology.py

示例12: residual

# 需要导入模块: import lmfit [as 别名]
# 或者: from lmfit import Parameters [as 别名]
def residual(self, parameters: Parameters, time_range: np.arange, data: np.ndarray) -> np.ndarray:
        """
        Obtain fit error (to minimize).

        :param parameters: parameters to use (which we are usually minimizing the residual for)
        :param time_range: time range for solution (over which we obtain the residual)
        :param data: data to fit the models too (i.e. compute residuals in terms of)
        :return:
        """
        initial_conditions = []
        for variable in self.initial_conditions:
            initial_conditions.append(parameters[variable].value)

        # obtain solution given current initial conditions and parameters
        solution = self.solve(time_range, initial_conditions, parameters)

        # compute residual, using custom error function if it has been passed in
        residual = solution - data if self.error is None else self.error(solution, data, parameters)

        if self.fit_period is not None:
            residual = residual[-self.fit_period:]

        return residual.ravel() 
开发者ID:goldmansachs,项目名称:gs-quant,代码行数:25,代码来源:epidemiology.py

示例13: calculate_engine_idle_fuel_consumption

# 需要导入模块: import lmfit [as 别名]
# 或者: from lmfit import Parameters [as 别名]
def calculate_engine_idle_fuel_consumption(
        idle_fuel_consumption_model, co2_params_calibrated=None):
    """
    Calculates fuel consumption at hot idle engine speed [g/s].

    :param idle_fuel_consumption_model:
        Idle fuel consumption model.
    :type idle_fuel_consumption_model: IdleFuelConsumptionModel

    :param co2_params_calibrated:
        CO2 emission model parameters (a2, b2, a, b, c, l, l2, t, trg).

        The missing parameters are set equal to zero.
    :type co2_params_calibrated: lmfit.Parameters

    :return:
        Fuel consumption at hot idle engine speed [g/s].
    :rtype: float
    """

    return idle_fuel_consumption_model.consumption(co2_params_calibrated)[0] 
开发者ID:JRCSTU,项目名称:CO2MPAS-TA,代码行数:23,代码来源:fc.py

示例14: _select_initial_friction_params

# 需要导入模块: import lmfit [as 别名]
# 或者: from lmfit import Parameters [as 别名]
def _select_initial_friction_params(co2_params_initial_guess):
    """
    Selects initial guess of friction params l & l2 for the calculation of
    the motoring curve.

    :param co2_params_initial_guess:
        Initial guess of CO2 emission model params.
    :type co2_params_initial_guess: lmfit.Parameters

    :return:
        Initial guess of friction params l & l2.
    :rtype: float, float
    """

    params = co2_params_initial_guess.valuesdict()

    return sh.selector(('l', 'l2'), params, output_type='list')


# noinspection PyUnusedLocal 
开发者ID:JRCSTU,项目名称:CO2MPAS-TA,代码行数:22,代码来源:fc.py

示例15: _missing_co2_params

# 需要导入模块: import lmfit [as 别名]
# 或者: from lmfit import Parameters [as 别名]
def _missing_co2_params(params, *args, _not=False):
    """
    Checks if all co2_params are not defined.

    :param params:
        CO2 emission model parameters (a2, b2, a, b, c, l, l2, t, trg).
    :type params: dict | lmfit.Parameters

    :param _not:
        If True the function checks if not all co2_params are defined.
    :type _not: bool

    :return:
        If is missing some parameter.
    :rtype: bool
    """

    s = {'a', 'b', 'c', 'a2', 'b2', 'l', 'l2', 't0', 'dt', 'trg'}

    if _not:
        return set(params).issuperset(s)

    return not set(params).issuperset(s) 
开发者ID:JRCSTU,项目名称:CO2MPAS-TA,代码行数:25,代码来源:fc.py


注:本文中的lmfit.Parameters方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。