当前位置: 首页>>代码示例>>Python>>正文


Python lightgbm.Booster方法代码示例

本文整理汇总了Python中lightgbm.Booster方法的典型用法代码示例。如果您正苦于以下问题:Python lightgbm.Booster方法的具体用法?Python lightgbm.Booster怎么用?Python lightgbm.Booster使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在lightgbm的用法示例。


在下文中一共展示了lightgbm.Booster方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: train_and_predict

# 需要导入模块: import lightgbm [as 别名]
# 或者: from lightgbm import Booster [as 别名]
def train_and_predict(self, train, valid, weight, categorical_features: List[str], target: str, params: dict) \
            -> Tuple[Booster, dict]:
        if type(train) != pd.DataFrame or type(valid) != pd.DataFrame:
            raise ValueError('Parameter train and valid must be pandas.DataFrame')

        if list(train.columns) != list(valid.columns):
            raise ValueError('Train and valid must have a same column list')

        predictors = train.columns.drop(target)
        if weight is None:
            d_train = lgb.Dataset(train[predictors], label=train[target].values)
        else:
            print(weight)
            d_train = lgb.Dataset(train[predictors], label=train[target].values, weight=weight)
        d_valid = lgb.Dataset(valid[predictors], label=valid[target].values)

        eval_results = {}
        model: Booster = lgb.train(params['model_params'],
                                   d_train,
                                   categorical_feature=categorical_features,
                                   valid_sets=[d_train, d_valid],
                                   valid_names=['train', 'valid'],
                                   evals_result=eval_results,
                                   **params['train_params'])
        return model, eval_results 
开发者ID:flowlight0,项目名称:talkingdata-adtracking-fraud-detection,代码行数:27,代码来源:lightgbm.py

示例2: __init__

# 需要导入模块: import lightgbm [as 别名]
# 或者: from lightgbm import Booster [as 别名]
def __init__(self, spec, model):

        super(_LightGBMModelArtifactWrapper, self).__init__(spec)

        try:
            import lightgbm as lgb
        except ImportError:
            raise MissingDependencyException(
                "lightgbm package is required to use LightGBMModelArtifact"
            )

        if not isinstance(model, lgb.Booster):
            raise InvalidArgument(
                "Expect `model` argument to be a `lightgbm.Booster` instance"
            )

        self._model = model 
开发者ID:bentoml,项目名称:BentoML,代码行数:19,代码来源:lightgbm_model_artifact.py

示例3: load_model

# 需要导入模块: import lightgbm [as 别名]
# 或者: from lightgbm import Booster [as 别名]
def load_model(model_uri):
    """
    Load a LightGBM model from a local file or a run.

    :param model_uri: The location, in URI format, of the MLflow model. For example:

                      - ``/Users/me/path/to/local/model``
                      - ``relative/path/to/local/model``
                      - ``s3://my_bucket/path/to/model``
                      - ``runs:/<mlflow_run_id>/run-relative/path/to/model``

                      For more information about supported URI schemes, see
                      `Referencing Artifacts <https://www.mlflow.org/docs/latest/tracking.html#
                      artifact-locations>`_.

    :return: A LightGBM model (an instance of `lightgbm.Booster`_).
    """
    local_model_path = _download_artifact_from_uri(artifact_uri=model_uri)
    flavor_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME)
    lgb_model_file_path = os.path.join(local_model_path, flavor_conf.get("data", "model.lgb"))
    return _load_model(path=lgb_model_file_path) 
开发者ID:mlflow,项目名称:mlflow,代码行数:23,代码来源:lightgbm.py

示例4: _get_booster_best_score

# 需要导入模块: import lightgbm [as 别名]
# 或者: from lightgbm import Booster [as 别名]
def _get_booster_best_score(self, booster: "lgb.Booster") -> float:

        metric = self._get_metric_for_objective()
        valid_sets = self.lgbm_kwargs.get("valid_sets")  # type: Optional[VALID_SET_TYPE]

        if self.lgbm_kwargs.get("valid_names") is not None:
            if type(self.lgbm_kwargs["valid_names"]) is str:
                valid_name = self.lgbm_kwargs["valid_names"]
            elif type(self.lgbm_kwargs["valid_names"]) in [list, tuple]:
                valid_name = self.lgbm_kwargs["valid_names"][-1]
            else:
                raise NotImplementedError

        elif type(valid_sets) is lgb.Dataset:
            valid_name = "valid_0"

        elif isinstance(valid_sets, (list, tuple)) and len(valid_sets) > 0:
            valid_set_idx = len(valid_sets) - 1
            valid_name = "valid_{}".format(valid_set_idx)

        else:
            raise NotImplementedError

        val_score = booster.best_score[valid_name][metric]
        return val_score 
开发者ID:optuna,项目名称:optuna,代码行数:27,代码来源:optimize.py

示例5: __init__

# 需要导入模块: import lightgbm [as 别名]
# 或者: from lightgbm import Booster [as 别名]
def __init__(self):
        scalingModelData = json.loads(pkg_resources.resource_string(__name__, "../atpe_models/scaling_model.json"))
        self.featureScalingModels = {}
        for key in self.atpeModelFeatureKeys:
            self.featureScalingModels[key] = sklearn.preprocessing.StandardScaler()
            self.featureScalingModels[key].scale_ = numpy.array(scalingModelData[key]['scales'])
            self.featureScalingModels[key].mean_ = numpy.array(scalingModelData[key]['means'])
            self.featureScalingModels[key].var_ = numpy.array(scalingModelData[key]['variances'])

        self.parameterModels = {}
        self.parameterModelConfigurations = {}
        for param in self.atpeParameters:
            modelData = pkg_resources.resource_string(__name__, "../atpe_models/model-" + param + '.txt')
            with hypermax.file_utils.ClosedNamedTempFile(modelData) as model_file_name:
                self.parameterModels[param] = lightgbm.Booster(model_file=model_file_name)

            configString = pkg_resources.resource_string(__name__, "../atpe_models/model-" + param + '-configuration.json')
            data = json.loads(configString)
            self.parameterModelConfigurations[param] = data

        self.lastATPEParameters = None
        self.lastLockedParameters = []
        self.atpeParamDetails = None 
开发者ID:electricbrainio,项目名称:hypermax,代码行数:25,代码来源:atpe_optimizer.py

示例6: image_predict

# 需要导入模块: import lightgbm [as 别名]
# 或者: from lightgbm import Booster [as 别名]
def image_predict(self, X, **kwargs):
        """
        Predicts class labels for the entire image.

        :param X: Array of images to be classified.
        :type X: numpy array, shape = [n_images, n_pixels_y, n_pixels_x, n_bands]
        :param kwargs: Any keyword arguments that will be passed to the classifier's prediction method
        :return: raster classification map
        :rtype: numpy array, [n_samples, n_pixels_y, n_pixels_x]
        """
        pixels = self.extract_pixels(X)

        if isinstance(self.classifier, Booster):
            raise NotImplementedError('An instance of lightgbm.Booster can only return prediction probabilities, '
                                      'use PixelClassifier.image_predict_proba instead')

        predictions = self.classifier.predict(pixels, **kwargs)

        return predictions.reshape(X.shape[0], X.shape[1], X.shape[2]) 
开发者ID:sentinel-hub,项目名称:sentinel2-cloud-detector,代码行数:21,代码来源:PixelClassifier.py

示例7: image_predict_proba

# 需要导入模块: import lightgbm [as 别名]
# 或者: from lightgbm import Booster [as 别名]
def image_predict_proba(self, X, **kwargs):
        """
        Predicts class probabilities for the entire image.

        :param X: Array of images to be classified.
        :type X: numpy array, shape = [n_images, n_pixels_y, n_pixels_x, n_bands]
        :param kwargs: Any keyword arguments that will be passed to the classifier's prediction method
        :return: classification probability map
        :rtype: numpy array, [n_samples, n_pixels_y, n_pixels_x]
        """
        pixels = self.extract_pixels(X)

        if isinstance(self.classifier, Booster):
            probabilities = self.classifier.predict(pixels, **kwargs)
            probabilities = np.vstack((1. - probabilities, probabilities)).transpose()
        else:
            probabilities = self.classifier.predict_proba(pixels, **kwargs)

        return probabilities.reshape(X.shape[0], X.shape[1], X.shape[2], probabilities.shape[1]) 
开发者ID:sentinel-hub,项目名称:sentinel2-cloud-detector,代码行数:21,代码来源:PixelClassifier.py

示例8: check

# 需要导入模块: import lightgbm [as 别名]
# 或者: from lightgbm import Booster [as 别名]
def check(conf=DEFAULTCONF):
    if not conf['ENABLED']:
        return False
    if not has_ember:
        return False

    if not Path(conf['path-to-model']).is_file():
        print("'{}' does not exist. Check config.ini for model location.".format(conf['path-to-model']))
        return False

    try:
        global LGBM_MODEL
        LGBM_MODEL = lgb.Booster(model_file=conf['path-to-model'])
    except lgb.LightGBMError as e:
        print("Unable to load model, {}. ({})".format(conf['path-to-model'], e))
        return False

    return True 
开发者ID:mitre,项目名称:multiscanner,代码行数:20,代码来源:EndgameEmber.py

示例9: load

# 需要导入模块: import lightgbm [as 别名]
# 或者: from lightgbm import Booster [as 别名]
def load(self, model_file_path):
        logger.debug("LightgbmAlgorithm load model from %s" % model_file_path)
        self.model = lgb.Booster(model_file=model_file_path) 
开发者ID:mljar,项目名称:mljar-supervised,代码行数:5,代码来源:lightgbm.py

示例10: __init__

# 需要导入模块: import lightgbm [as 别名]
# 或者: from lightgbm import Booster [as 别名]
def __init__(self, model_path=EMBER_MODEL_PATH, thresh=0.8336, name='ember'):
        # load lightgbm model
        self.model = lgb.Booster(model_file=model_path)
        self.thresh = thresh
        self.__name__ = 'ember' 
开发者ID:endgameinc,项目名称:malware_evasion_competition,代码行数:7,代码来源:models.py

示例11: dump

# 需要导入模块: import lightgbm [as 别名]
# 或者: from lightgbm import Booster [as 别名]
def dump(self, model: lgb.Booster) -> FilesContextManager:
        with tempfile.TemporaryDirectory(prefix='ebonite_lightgbm_dump') as f:
            path = os.path.join(f, self.model_path)
            model.save_model(path)
            yield Blobs({self.model_path: LocalFileBlob(path)}) 
开发者ID:zyfra,项目名称:ebonite,代码行数:7,代码来源:model.py

示例12: load

# 需要导入模块: import lightgbm [as 别名]
# 或者: from lightgbm import Booster [as 别名]
def load(self, path):
        model_file = os.path.join(path, self.model_path)
        return lgb.Booster(model_file=model_file) 
开发者ID:zyfra,项目名称:ebonite,代码行数:5,代码来源:model.py

示例13: load

# 需要导入模块: import lightgbm [as 别名]
# 或者: from lightgbm import Booster [as 别名]
def load(self, path):
        try:
            import lightgbm as lgb
        except ImportError:
            raise MissingDependencyException(
                "lightgbm package is required to use LightGBMModelArtifact"
            )
        bst = lgb.Booster(model_file=self._model_file_path(path))

        return self.pack(bst) 
开发者ID:bentoml,项目名称:BentoML,代码行数:12,代码来源:lightgbm_model_artifact.py

示例14: load_model

# 需要导入模块: import lightgbm [as 别名]
# 或者: from lightgbm import Booster [as 别名]
def load_model(path,name):
        root = jhkaggle.jhkaggle_config['PATH']
        model_path = os.path.join(root,path)
        meta_filename = os.path.join(model_path,"meta.json")
        with open(meta_filename, 'r') as fp:
            meta = json.load(fp)
        result = TrainLightGBM(meta['data_source'],meta['params'],False)
        result.model = lgb.Booster(model_file=os.path.join(model_path,name+".txt"))
        return result 
开发者ID:jeffheaton,项目名称:jh-kaggle-util,代码行数:11,代码来源:train_lightgbm.py

示例15: _load_model

# 需要导入模块: import lightgbm [as 别名]
# 或者: from lightgbm import Booster [as 别名]
def _load_model(path):
    import lightgbm as lgb
    return lgb.Booster(model_file=path) 
开发者ID:mlflow,项目名称:mlflow,代码行数:5,代码来源:lightgbm.py


注:本文中的lightgbm.Booster方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。