当前位置: 首页>>代码示例>>Python>>正文


Python lifelines.KaplanMeierFitter方法代码示例

本文整理汇总了Python中lifelines.KaplanMeierFitter方法的典型用法代码示例。如果您正苦于以下问题:Python lifelines.KaplanMeierFitter方法的具体用法?Python lifelines.KaplanMeierFitter怎么用?Python lifelines.KaplanMeierFitter使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在lifelines的用法示例。


在下文中一共展示了lifelines.KaplanMeierFitter方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: calib_plot

# 需要导入模块: import lifelines [as 别名]
# 或者: from lifelines import KaplanMeierFitter [as 别名]
def calib_plot(fu_time, n_bins, pred_surv, time, dead, color, label, error_bars=0,alpha=1., markersize=1., markertype='o'):
	cuts = np.concatenate((np.array([-1e6]),np.percentile(pred_surv, np.arange(100/n_bins,100,100/n_bins)),np.array([1e6])))
	bin = pd.cut(pred_surv,cuts,labels=False)
	kmf = KaplanMeierFitter()
	est = []
	ci_upper = []
	ci_lower = []
	mean_pred_surv = []
	for which_bin in range(max(bin)+1):
		kmf.fit(time[bin==which_bin], event_observed=dead[bin==which_bin])
		est.append(np.interp(fu_time, kmf.survival_function_.index.values, kmf.survival_function_.KM_estimate))
		ci_upper.append(np.interp(fu_time, kmf.survival_function_.index.values, kmf.confidence_interval_.loc[:,'KM_estimate_upper_0.95']))
		ci_lower.append(np.interp(fu_time, kmf.survival_function_.index.values, kmf.confidence_interval_.loc[:,'KM_estimate_lower_0.95']))
		mean_pred_surv.append(np.mean(pred_surv[bin==which_bin]))
	est = np.array(est)
	ci_upper = np.array(ci_upper)
	ci_lower = np.array(ci_lower)
	if error_bars:
		plt.errorbar(mean_pred_surv, est, yerr = np.transpose(np.column_stack((est-ci_lower,ci_upper-est))), fmt='o',c=color,label=label)
	else:
		plt.plot(mean_pred_surv, est, markertype, c=color,label=label, alpha=alpha, markersize=markersize)
	return (mean_pred_surv, est) 
开发者ID:MGensheimer,项目名称:nnet-survival,代码行数:24,代码来源:support_study.py

示例2: plot_km_survf

# 需要导入模块: import lifelines [as 别名]
# 或者: from lifelines import KaplanMeierFitter [as 别名]
def plot_km_survf(data, t_col="t", e_col="e"):
    """
    Plot KM survival function curves.

    Parameters
    ----------
    data: pandas.DataFrame
        Survival data to plot.
    t_col: str
        Column name in data indicating time.
    e_col: str
        Column name in data indicating events or status.
    """
    from lifelines import KaplanMeierFitter
    from lifelines.plotting import add_at_risk_counts
    fig, ax = plt.subplots(figsize=(6, 4))
    kmfh = KaplanMeierFitter()
    kmfh.fit(data[t_col], event_observed=data[e_col], label="KM Survival Curve")
    kmfh.survival_function_.plot(ax=ax)
    plt.ylim(0, 1.01)
    plt.xlabel("Time")
    plt.ylabel("Probalities")
    plt.legend(loc="best")
    add_at_risk_counts(kmfh, ax=ax)
    plt.show() 
开发者ID:liupei101,项目名称:TFDeepSurv,代码行数:27,代码来源:vision.py

示例3: fit_plot

# 需要导入模块: import lifelines [as 别名]
# 或者: from lifelines import KaplanMeierFitter [as 别名]
def fit_plot(T1, T2, E1, E2, title, unit_of_time, label1, label2):
    kmf1 = KaplanMeierFitter()
    kmf2 = KaplanMeierFitter()
    ax = kmf1.fit(T1, E1, label=label1, alpha=0.05).plot(show_censors=True)
    ax = kmf2.fit(T2, E2, label=label2, alpha=0.05).plot(ax=ax, show_censors=True)
    ax.set_title(title)
    if unit_of_time:
        plt.xlabel(f'timeline ({unit_of_time})')
    lifelines.plotting.add_at_risk_counts(kmf1, kmf2, ax=ax, labels=None)
    figname = ax.figure.canvas.get_window_title()
    ax.figure.canvas.set_window_title(f'Party {mpc.pid} - {figname}')
    return kmf1, kmf2 
开发者ID:lschoe,项目名称:mpyc,代码行数:14,代码来源:kmsurvival.py

示例4: calibration_time_to_event

# 需要导入模块: import lifelines [as 别名]
# 或者: from lifelines import KaplanMeierFitter [as 别名]
def calibration_time_to_event(Forecast, T, E, bins=10, eps=1e-3):
    """
    Calculate calibration in the time-to-event setting, with integral transform and KM.
    """
    cdfs = Forecast.cdf(T)
    kmf = KaplanMeierFitter()
    kmf.fit(cdfs, E)
    idxs = np.round(np.linspace(0, len(kmf.survival_function_) - 1, 11))
    preds = np.array(kmf.survival_function_.iloc[idxs].index)
    obs = 1 - np.array(kmf.survival_function_.iloc[idxs].KM_estimate)
    slope, intercept = np.polyfit(preds, obs, deg=1)
    return preds, obs, slope, intercept 
开发者ID:stanfordmlgroup,项目名称:ngboost,代码行数:14,代码来源:evaluation.py

示例5: test_kaplan_meier_vs_lifelines

# 需要导入模块: import lifelines [as 别名]
# 或者: from lifelines import KaplanMeierFitter [as 别名]
def test_kaplan_meier_vs_lifelines(n, p_cens):
    from lifelines import KaplanMeierFitter
    np.random.seed(0)
    durations = np.random.uniform(0, 100, n)
    events = np.random.binomial(1, 1 - p_cens, n).astype('float')
    km = utils.kaplan_meier(durations, events)
    kmf = KaplanMeierFitter().fit(durations, events).survival_function_['KM_estimate']
    assert km.shape == kmf.shape
    assert (km - kmf).abs().max() < 1e-14
    assert (km.index == kmf.index).all() 
开发者ID:havakv,项目名称:pycox,代码行数:12,代码来源:test_utils.py


注:本文中的lifelines.KaplanMeierFitter方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。