当前位置: 首页>>代码示例>>Python>>正文


Python util.tiny方法代码示例

本文整理汇总了Python中librosa.util.tiny方法的典型用法代码示例。如果您正苦于以下问题:Python util.tiny方法的具体用法?Python util.tiny怎么用?Python util.tiny使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在librosa.util的用法示例。


在下文中一共展示了util.tiny方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: inverse

# 需要导入模块: from librosa import util [as 别名]
# 或者: from librosa.util import tiny [as 别名]
def inverse(self, magnitude, phase):
        recombine_magnitude_phase = torch.cat(
            [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)

        inverse_transform = F.conv_transpose1d(
            recombine_magnitude_phase,
            Variable(self.inverse_basis, requires_grad=False),
            stride=self.hop_length,
            padding=0)

        if self.window is not None:
            window_sum = window_sumsquare(
                self.window, magnitude.size(-1), hop_length=self.hop_length,
                win_length=self.win_length, n_fft=self.filter_length,
                dtype=np.float32)
            # remove modulation effects
            approx_nonzero_indices = torch.from_numpy(
                np.where(window_sum > tiny(window_sum))[0])
            window_sum = torch.autograd.Variable(
                torch.from_numpy(window_sum), requires_grad=False)
            window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum
            inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]

            # scale by hop ratio
            inverse_transform *= float(self.filter_length) / self.hop_length

        inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
        inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):]

        return inverse_transform 
开发者ID:alphacep,项目名称:tn2-wg,代码行数:32,代码来源:stft.py

示例2: inverse

# 需要导入模块: from librosa import util [as 别名]
# 或者: from librosa.util import tiny [as 别名]
def inverse(self, magnitude, phase):
        recombine_magnitude_phase = torch.cat(
            [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)

        inverse_transform = F.conv_transpose1d(
            recombine_magnitude_phase,
            Variable(self.inverse_basis, requires_grad=False),
            stride=self.hop_length,
            padding=0)

        if self.window is not None:
            window_sum = self._window_sumsquare(
                self.window, magnitude.size(-1), hop_length=self.hop_length,
                win_length=self.win_length, n_fft=self.filter_length,
                dtype=np.float32)
            # remove modulation effects
            approx_nonzero_indices = torch.from_numpy(
                np.where(window_sum > tiny(window_sum))[0])
            window_sum = torch.autograd.Variable(
                torch.from_numpy(window_sum), requires_grad=False).cuda()
            inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]

            # scale by hop ratio
            inverse_transform *= float(self.filter_length) / self.hop_length

        inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
        inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):]

        return inverse_transform 
开发者ID:tiberiu44,项目名称:TTS-Cube,代码行数:31,代码来源:stft.py

示例3: inverse

# 需要导入模块: from librosa import util [as 别名]
# 或者: from librosa.util import tiny [as 别名]
def inverse(self, magnitude, phase):
        recombine_magnitude_phase = torch.cat(
            [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)

        inverse_transform = F.conv_transpose1d(
            recombine_magnitude_phase,
            Variable(self.inverse_basis, requires_grad=False),
            stride=self.hop_length,
            padding=0)

        if self.window is not None:
            window_sum = window_sumsquare(
                self.window, magnitude.size(-1), hop_length=self.hop_length,
                win_length=self.win_length, n_fft=self.filter_length,
                dtype=np.float32)
            # remove modulation effects
            approx_nonzero_indices = torch.from_numpy(
                np.where(window_sum > tiny(window_sum))[0])
            window_sum = torch.autograd.Variable(
                torch.from_numpy(window_sum), requires_grad=False)
            window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum
            inverse_transform[:, :,
                              approx_nonzero_indices] /= window_sum[approx_nonzero_indices]

            # scale by hop ratio
            inverse_transform *= float(self.filter_length) / self.hop_length

        inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
        inverse_transform = inverse_transform[:,
                                              :, :-int(self.filter_length/2):]

        return inverse_transform 
开发者ID:xcmyz,项目名称:LightSpeech,代码行数:34,代码来源:stft.py

示例4: inverse

# 需要导入模块: from librosa import util [as 别名]
# 或者: from librosa.util import tiny [as 别名]
def inverse(self, magnitude, phase):
        recombine_magnitude_phase = torch.cat(
            [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)

        inverse_transform = F.conv_transpose1d(
            recombine_magnitude_phase,
            Variable(self.inverse_basis, requires_grad=False),
            stride=self.hop_length,
            padding=0)

        if self.window is not None:
            window_sum = window_sumsquare(
                self.window, magnitude.size(-1), hop_length=self.hop_length,
                win_length=self.win_length, n_fft=self.filter_length,
                dtype=np.float32)
            # remove modulation effects
            approx_nonzero_indices = torch.from_numpy(
                np.where(window_sum > tiny(window_sum))[0])
            window_sum = torch.autograd.Variable(
                torch.from_numpy(window_sum), requires_grad=False)
            inverse_transform[:, :, approx_nonzero_indices] /= window_sum[
                approx_nonzero_indices].cuda()

            # scale by hop ratio
            inverse_transform *= float(self.filter_length) / self.hop_length

        inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
        inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):]

        return inverse_transform 
开发者ID:guanlongzhao,项目名称:fac-via-ppg,代码行数:32,代码来源:stft.py

示例5: inverse

# 需要导入模块: from librosa import util [as 别名]
# 或者: from librosa.util import tiny [as 别名]
def inverse(self, magnitude, phase):
        recombine_magnitude_phase = torch.cat(
            [magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1)

        inverse_transform = F.conv_transpose1d(
            recombine_magnitude_phase,
            Variable(self.inverse_basis, requires_grad=False),
            stride=self.hop_length,
            padding=0)

        if self.window is not None:
            window_sum = window_sumsquare(
                self.window, magnitude.size(-1), hop_length=self.hop_length,
                win_length=self.win_length, n_fft=self.filter_length,
                dtype=np.float32)
            # remove modulation effects
            approx_nonzero_indices = torch.from_numpy(
                np.where(window_sum > tiny(window_sum))[0])
            window_sum = torch.autograd.Variable(
                torch.from_numpy(window_sum), requires_grad=False)
            window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum
            inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]

            # scale by hop ratio
            inverse_transform *= float(self.filter_length) / self.hop_length

        inverse_transform = inverse_transform[:, :, int(self.filter_length / 2):]
        inverse_transform = inverse_transform[:, :, :-int(self.filter_length / 2):]

        return inverse_transform 
开发者ID:foamliu,项目名称:Tacotron2-Mandarin,代码行数:32,代码来源:stft.py

示例6: inverse

# 需要导入模块: from librosa import util [as 别名]
# 或者: from librosa.util import tiny [as 别名]
def inverse(self, magnitude, phase):
        """Call the inverse STFT (iSTFT), given magnitude and phase tensors produced 
        by the ```transform``` function.
        
        Arguments:
            magnitude {tensor} -- Magnitude of STFT with shape (num_batch, 
                num_frequencies, num_frames)
            phase {tensor} -- Phase of STFT with shape (num_batch, 
                num_frequencies, num_frames)
        
        Returns:
            inverse_transform {tensor} -- Reconstructed audio given magnitude and phase. Of
                shape (num_batch, num_samples)
        """
        recombine_magnitude_phase = torch.cat(
            [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)

        inverse_transform = F.conv_transpose1d(
            recombine_magnitude_phase,
            self.inverse_basis,
            stride=self.hop_length,
            padding=0)

        if self.window is not None:
            window_sum = window_sumsquare(
                self.window, magnitude.size(-1), hop_length=self.hop_length,
                win_length=self.win_length, n_fft=self.filter_length,
                dtype=np.float32)
            # remove modulation effects
            approx_nonzero_indices = torch.from_numpy(
                np.where(window_sum > tiny(window_sum))[0])
            window_sum = torch.from_numpy(window_sum).to(inverse_transform.device)
            inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]

            # scale by hop ratio
            inverse_transform *= float(self.filter_length) / self.hop_length

        inverse_transform = inverse_transform[..., self.pad_amount:]
        inverse_transform = inverse_transform[..., :self.num_samples]
        inverse_transform = inverse_transform.squeeze(1)

        return inverse_transform 
开发者ID:pseeth,项目名称:torch-stft,代码行数:44,代码来源:stft.py


注:本文中的librosa.util.tiny方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。