本文整理汇总了Python中layers.predictions方法的典型用法代码示例。如果您正苦于以下问题:Python layers.predictions方法的具体用法?Python layers.predictions怎么用?Python layers.predictions使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类layers
的用法示例。
在下文中一共展示了layers.predictions方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: eval_graph
# 需要导入模块: import layers [as 别名]
# 或者: from layers import predictions [as 别名]
def eval_graph(self, dataset='test'):
"""Constructs classifier evaluation graph.
Args:
dataset: the labeled dataset to evaluate, {'train', 'test', 'valid'}.
Returns:
eval_ops: dict<metric name, tuple(value, update_op)>
var_restore_dict: dict mapping variable restoration names to variables.
Trainable variables will be mapped to their moving average names.
"""
inputs = _inputs(dataset, pretrain=False)
embedded = self.layers['embedding'](inputs.tokens)
_, next_state, logits, _ = self.cl_loss_from_embedding(
embedded, inputs=inputs, return_intermediates=True)
eval_ops = {
'accuracy':
tf.contrib.metrics.streaming_accuracy(
layers_lib.predictions(logits), inputs.labels, inputs.weights)
}
with tf.control_dependencies([inputs.save_state(next_state)]):
acc, acc_update = eval_ops['accuracy']
acc_update = tf.identity(acc_update)
eval_ops['accuracy'] = (acc, acc_update)
var_restore_dict = make_restore_average_vars_dict()
return eval_ops, var_restore_dict
示例2: eval_graph
# 需要导入模块: import layers [as 别名]
# 或者: from layers import predictions [as 别名]
def eval_graph(self, dataset='test'):
"""Constructs classifier evaluation graph.
Args:
dataset: the labeled dataset to evaluate, {'train', 'test', 'valid'}.
Returns:
eval_ops: dict<metric name, tuple(value, update_op)>
var_restore_dict: dict mapping variable restoration names to variables.
Trainable variables will be mapped to their moving average names.
"""
inputs = _inputs(dataset, pretrain=False)
embedded = self.layers['embedding'](inputs.tokens)
_, next_state, logits, _ = self.cl_loss_from_embedding(
embedded, inputs=inputs, return_intermediates=True)
if FLAGS.single_label:
indices = tf.stack([tf.range(FLAGS.batch_size), inputs.length - 1], 1)
labels = tf.expand_dims(tf.gather_nd(inputs.labels, indices), 1)
weights = tf.expand_dims(tf.gather_nd(inputs.weights, indices), 1)
else:
labels = inputs.labels
weights = inputs.weights
eval_ops = {
'accuracy':
tf.contrib.metrics.streaming_accuracy(
layers_lib.predictions(logits), labels, weights)
}
with tf.control_dependencies([inputs.save_state(next_state)]):
acc, acc_update = eval_ops['accuracy']
acc_update = tf.identity(acc_update)
eval_ops['accuracy'] = (acc, acc_update)
var_restore_dict = make_restore_average_vars_dict()
return eval_ops, var_restore_dict