本文整理汇总了Python中layers.conv方法的典型用法代码示例。如果您正苦于以下问题:Python layers.conv方法的具体用法?Python layers.conv怎么用?Python layers.conv使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类layers
的用法示例。
在下文中一共展示了layers.conv方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_scope_and_reuse_conv
# 需要导入模块: import layers [as 别名]
# 或者: from layers import conv [as 别名]
def get_scope_and_reuse_conv(network_id):
"""Return the network scope name of conv part given network id.
We use the ae as name only to make it consistent with pix2pix
structure but it is not an auto-encoder. For network 1 or
network 2, the weight is not shared. network 3 shares with network 1
and network 4 shares with network 2.
"""
if network_id == 1 or network_id == 2:
scope = 'ae{}'.format(network_id)
reuse = False
elif network_id == 3:
scope = 'ae1'
reuse = True
elif network_id == 4:
scope = 'ae2'
reuse = True
return scope, reuse
示例2: logit
# 需要导入模块: import layers [as 别名]
# 或者: from layers import conv [as 别名]
def logit(x, is_training=True, update_batch_stats=True, stochastic=True, seed=1234):
h = x
rng = numpy.random.RandomState(seed)
h = L.conv(h, ksize=3, stride=1, f_in=3, f_out=128, seed=rng.randint(123456), name='c1')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b1'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=128, seed=rng.randint(123456), name='c2')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b2'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=128, seed=rng.randint(123456), name='c3')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b3'), FLAGS.lrelu_a)
h = L.max_pool(h, ksize=2, stride=2)
h = tf.nn.dropout(h, keep_prob=FLAGS.keep_prob_hidden, seed=rng.randint(123456)) if stochastic else h
h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=256, seed=rng.randint(123456), name='c4')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b4'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=256, seed=rng.randint(123456), name='c5')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b5'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=256, seed=rng.randint(123456), name='c6')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b6'), FLAGS.lrelu_a)
h = L.max_pool(h, ksize=2, stride=2)
h = tf.nn.dropout(h, keep_prob=FLAGS.keep_prob_hidden, seed=rng.randint(123456)) if stochastic else h
h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=512, seed=rng.randint(123456), padding="VALID", name='c7')
h = L.lrelu(L.bn(h, 512, is_training=is_training, update_batch_stats=update_batch_stats, name='b7'), FLAGS.lrelu_a)
h = L.conv(h, ksize=1, stride=1, f_in=512, f_out=256, seed=rng.randint(123456), name='c8')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b8'), FLAGS.lrelu_a)
h = L.conv(h, ksize=1, stride=1, f_in=256, f_out=128, seed=rng.randint(123456), name='c9')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b9'), FLAGS.lrelu_a)
h = tf.reduce_mean(h, reduction_indices=[1, 2]) # Global average pooling
h = L.fc(h, 128, 10, seed=rng.randint(123456), name='fc')
if FLAGS.top_bn:
h = L.bn(h, 10, is_training=is_training,
update_batch_stats=update_batch_stats, name='bfc')
return h
示例3: _fuse
# 需要导入模块: import layers [as 别名]
# 或者: from layers import conv [as 别名]
def _fuse(self):
with tf.variable_scope("Context_to_Query_Attention_Layer"):
C = tf.tile(tf.expand_dims(self.c_embed_encoding,2),[1,1,self.max_q_len,1])
Q = tf.tile(tf.expand_dims(self.q_embed_encoding,1),[1,self.max_p_len,1,1])
S = trilinear([C, Q, C*Q], input_keep_prob = 1.0 - self.dropout)
mask_q = tf.expand_dims(self.q_mask, 1)
S_ = tf.nn.softmax(mask_logits(S, mask = mask_q))
mask_c = tf.expand_dims(self.c_mask, 2)
S_T = tf.transpose(tf.nn.softmax(mask_logits(S, mask = mask_c), dim = 1),(0,2,1))
self.c2q = tf.matmul(S_, self.q_embed_encoding)
self.q2c = tf.matmul(tf.matmul(S_, S_T), self.c_embed_encoding)
self.attention_outputs = [self.c_embed_encoding, self.c2q, self.c_embed_encoding * self.c2q, self.c_embed_encoding * self.q2c]
N, PL, QL, CL, d, dc, nh = self._params()
if self.config.fix_pretrained_vector:
dc = self.char_mat.get_shape()[-1]
with tf.variable_scope("Model_Encoder_Layer"):
inputs = tf.concat(self.attention_outputs, axis = -1)
self.enc = [conv(inputs, d, name = "input_projection")]
for i in range(3):
if i % 2 == 0:
self.enc[i] = tf.nn.dropout(self.enc[i], 1.0 - self.dropout)
self.enc.append(
residual_block(self.enc[i],
num_blocks = 1,
num_conv_layers = 2,
kernel_size = 5,
mask = self.c_mask,
num_filters = d,
num_heads = nh,
seq_len = self.c_len,
scope = "Model_Encoder",
bias = False,
reuse = True if i > 0 else None,
dropout = self.dropout)
)
for i, item in enumerate(self.enc):
self.enc[i] = tf.reshape(self.enc[i],
[N, -1, self.enc[i].get_shape()[-1]])
示例4: _decode
# 需要导入模块: import layers [as 别名]
# 或者: from layers import conv [as 别名]
def _decode(self):
N, PL, QL, CL, d, dc, nh = self._params()
if self.config.use_position_attn:
start_logits = tf.squeeze(
conv(self._attention(tf.concat([self.enc[1], self.enc[2]], axis = -1), name="attn1"), 1, bias = False, name = "start_pointer"), -1)
end_logits = tf.squeeze(
conv(self._attention(tf.concat([self.enc[1], self.enc[3]], axis = -1), name="attn2"), 1, bias = False, name = "end_pointer"), -1)
else:
start_logits = tf.squeeze(
conv(tf.concat([self.enc[1], self.enc[2]], axis = -1), 1, bias = False, name = "start_pointer"), -1)
end_logits = tf.squeeze(
conv(tf.concat([self.enc[1], self.enc[3]], axis = -1), 1, bias = False, name = "end_pointer"), -1)
self.logits = [mask_logits(start_logits, mask = tf.reshape(self.c_mask, [N, -1])),
mask_logits(end_logits, mask = tf.reshape(self.c_mask, [N, -1]))]
self.logits1, self.logits2 = [l for l in self.logits]
outer = tf.matmul(tf.expand_dims(tf.nn.softmax(self.logits1), axis=2),
tf.expand_dims(tf.nn.softmax(self.logits2), axis=1))
outer = tf.matrix_band_part(outer, 0, self.max_a_len)
self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1)
self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1)
示例5: logit
# 需要导入模块: import layers [as 别名]
# 或者: from layers import conv [as 别名]
def logit(x, is_training=True, update_batch_stats=True, stochastic=True, seed=1234):
h = x
rng = numpy.random.RandomState(seed)
h = L.conv(h, ksize=3, stride=1, f_in=3, f_out=128, seed=rng.randint(123456), name='c1')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b1'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=128, seed=rng.randint(123456), name='c2')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b2'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=128, seed=rng.randint(123456), name='c3')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b3'), FLAGS.lrelu_a)
h = L.max_pool(h, ksize=2, stride=2)
h = tf.nn.dropout(h, keep_prob=FLAGS.keep_prob_hidden, seed=rng.randint(123456)) if stochastic else h
h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=256, seed=rng.randint(123456), name='c4')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b4'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=256, seed=rng.randint(123456), name='c5')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b5'), FLAGS.lrelu_a)
h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=256, seed=rng.randint(123456), name='c6')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b6'), FLAGS.lrelu_a)
h = L.max_pool(h, ksize=2, stride=2)
h = tf.nn.dropout(h, keep_prob=FLAGS.keep_prob_hidden, seed=rng.randint(123456)) if stochastic else h
h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=512, seed=rng.randint(123456), padding="VALID", name='c7')
h = L.lrelu(L.bn(h, 512, is_training=is_training, update_batch_stats=update_batch_stats, name='b7'), FLAGS.lrelu_a)
h = L.conv(h, ksize=1, stride=1, f_in=512, f_out=256, seed=rng.randint(123456), name='c8')
h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b8'), FLAGS.lrelu_a)
h = L.conv(h, ksize=1, stride=1, f_in=256, f_out=128, seed=rng.randint(123456), name='c9')
h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b9'), FLAGS.lrelu_a)
h1 = tf.reduce_mean(h, reduction_indices=[1, 2]) # Features to be aligned
h = L.fc(h1, 128, 10, seed=rng.randint(123456), name='fc')
if FLAGS.top_bn:
h = L.bn(h, 10, is_training=is_training,
update_batch_stats=update_batch_stats, name='bfc')
return h, h1