当前位置: 首页>>代码示例>>Python>>正文


Python layers.conv方法代码示例

本文整理汇总了Python中layers.conv方法的典型用法代码示例。如果您正苦于以下问题:Python layers.conv方法的具体用法?Python layers.conv怎么用?Python layers.conv使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在layers的用法示例。


在下文中一共展示了layers.conv方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_scope_and_reuse_conv

# 需要导入模块: import layers [as 别名]
# 或者: from layers import conv [as 别名]
def get_scope_and_reuse_conv(network_id):
    """Return the network scope name of conv part given network id.

    We use the ae as name only to make it consistent with pix2pix
    structure but it is not an auto-encoder. For network 1 or
    network 2, the weight is not shared. network 3 shares with network 1
    and network 4 shares with network 2.
    """
    if network_id == 1 or network_id == 2:
        scope = 'ae{}'.format(network_id)
        reuse = False
    elif network_id == 3:
        scope = 'ae1'
        reuse = True
    elif network_id == 4:
        scope = 'ae2'
        reuse = True
    return scope, reuse 
开发者ID:leehomyc,项目名称:Img2Img-Translation-Networks,代码行数:20,代码来源:model.py

示例2: logit

# 需要导入模块: import layers [as 别名]
# 或者: from layers import conv [as 别名]
def logit(x, is_training=True, update_batch_stats=True, stochastic=True, seed=1234):
    h = x

    rng = numpy.random.RandomState(seed)

    h = L.conv(h, ksize=3, stride=1, f_in=3, f_out=128, seed=rng.randint(123456), name='c1')
    h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b1'), FLAGS.lrelu_a)
    h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=128, seed=rng.randint(123456), name='c2')
    h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b2'), FLAGS.lrelu_a)
    h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=128, seed=rng.randint(123456), name='c3')
    h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b3'), FLAGS.lrelu_a)

    h = L.max_pool(h, ksize=2, stride=2)
    h = tf.nn.dropout(h, keep_prob=FLAGS.keep_prob_hidden, seed=rng.randint(123456)) if stochastic else h

    h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=256, seed=rng.randint(123456), name='c4')
    h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b4'), FLAGS.lrelu_a)
    h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=256, seed=rng.randint(123456), name='c5')
    h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b5'), FLAGS.lrelu_a)
    h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=256, seed=rng.randint(123456), name='c6')
    h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b6'), FLAGS.lrelu_a)

    h = L.max_pool(h, ksize=2, stride=2)
    h = tf.nn.dropout(h, keep_prob=FLAGS.keep_prob_hidden, seed=rng.randint(123456)) if stochastic else h

    h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=512, seed=rng.randint(123456), padding="VALID", name='c7')
    h = L.lrelu(L.bn(h, 512, is_training=is_training, update_batch_stats=update_batch_stats, name='b7'), FLAGS.lrelu_a)
    h = L.conv(h, ksize=1, stride=1, f_in=512, f_out=256, seed=rng.randint(123456), name='c8')
    h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b8'), FLAGS.lrelu_a)
    h = L.conv(h, ksize=1, stride=1, f_in=256, f_out=128, seed=rng.randint(123456), name='c9')
    h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b9'), FLAGS.lrelu_a)

    h = tf.reduce_mean(h, reduction_indices=[1, 2])  # Global average pooling
    h = L.fc(h, 128, 10, seed=rng.randint(123456), name='fc')

    if FLAGS.top_bn:
        h = L.bn(h, 10, is_training=is_training,
                 update_batch_stats=update_batch_stats, name='bfc')

    return h 
开发者ID:takerum,项目名称:vat_tf,代码行数:42,代码来源:cnn.py

示例3: _fuse

# 需要导入模块: import layers [as 别名]
# 或者: from layers import conv [as 别名]
def _fuse(self):

        with tf.variable_scope("Context_to_Query_Attention_Layer"):
            C = tf.tile(tf.expand_dims(self.c_embed_encoding,2),[1,1,self.max_q_len,1])
            Q = tf.tile(tf.expand_dims(self.q_embed_encoding,1),[1,self.max_p_len,1,1])
            S = trilinear([C, Q, C*Q], input_keep_prob = 1.0 - self.dropout)
            mask_q = tf.expand_dims(self.q_mask, 1)
            S_ = tf.nn.softmax(mask_logits(S, mask = mask_q))
            mask_c = tf.expand_dims(self.c_mask, 2)
            S_T = tf.transpose(tf.nn.softmax(mask_logits(S, mask = mask_c), dim = 1),(0,2,1))
            self.c2q = tf.matmul(S_, self.q_embed_encoding)
            self.q2c = tf.matmul(tf.matmul(S_, S_T), self.c_embed_encoding)
            self.attention_outputs = [self.c_embed_encoding, self.c2q, self.c_embed_encoding * self.c2q, self.c_embed_encoding * self.q2c]

        N, PL, QL, CL, d, dc, nh = self._params()
        if self.config.fix_pretrained_vector:
            dc = self.char_mat.get_shape()[-1]
        with tf.variable_scope("Model_Encoder_Layer"):
            inputs = tf.concat(self.attention_outputs, axis = -1)
            self.enc = [conv(inputs, d, name = "input_projection")]
            for i in range(3):
                if i % 2 == 0:
                    self.enc[i] = tf.nn.dropout(self.enc[i], 1.0 - self.dropout)
                self.enc.append(
                    residual_block(self.enc[i],
                        num_blocks = 1,
                        num_conv_layers = 2,
                        kernel_size = 5,
                        mask = self.c_mask,
                        num_filters = d,
                        num_heads = nh,
                        seq_len = self.c_len,
                        scope = "Model_Encoder",
                        bias = False,
                        reuse = True if i > 0 else None,
                        dropout = self.dropout)
                    )

            for i, item in enumerate(self.enc):
                self.enc[i] = tf.reshape(self.enc[i], 
                                    [N, -1, self.enc[i].get_shape()[-1]]) 
开发者ID:SeanLee97,项目名称:QANet_dureader,代码行数:43,代码来源:model.py

示例4: _decode

# 需要导入模块: import layers [as 别名]
# 或者: from layers import conv [as 别名]
def _decode(self):

        N, PL, QL, CL, d, dc, nh = self._params()

        if self.config.use_position_attn:
            start_logits = tf.squeeze(
                conv(self._attention(tf.concat([self.enc[1], self.enc[2]], axis = -1), name="attn1"), 1, bias = False, name = "start_pointer"), -1)
            end_logits = tf.squeeze(
                conv(self._attention(tf.concat([self.enc[1], self.enc[3]], axis = -1), name="attn2"), 1, bias = False, name = "end_pointer"), -1)
        else:
            start_logits = tf.squeeze(
                conv(tf.concat([self.enc[1], self.enc[2]], axis = -1), 1, bias = False, name = "start_pointer"), -1)
            end_logits = tf.squeeze(
                conv(tf.concat([self.enc[1], self.enc[3]], axis = -1), 1, bias = False, name = "end_pointer"), -1)

        self.logits = [mask_logits(start_logits, mask = tf.reshape(self.c_mask, [N, -1])),
                        mask_logits(end_logits, mask = tf.reshape(self.c_mask, [N, -1]))]

        self.logits1, self.logits2 = [l for l in self.logits]

        outer = tf.matmul(tf.expand_dims(tf.nn.softmax(self.logits1), axis=2),
                              tf.expand_dims(tf.nn.softmax(self.logits2), axis=1))

        outer = tf.matrix_band_part(outer, 0, self.max_a_len)
        self.yp1 = tf.argmax(tf.reduce_max(outer, axis=2), axis=1)
        self.yp2 = tf.argmax(tf.reduce_max(outer, axis=1), axis=1) 
开发者ID:SeanLee97,项目名称:QANet_dureader,代码行数:28,代码来源:model.py

示例5: logit

# 需要导入模块: import layers [as 别名]
# 或者: from layers import conv [as 别名]
def logit(x, is_training=True, update_batch_stats=True, stochastic=True, seed=1234):
    h = x

    rng = numpy.random.RandomState(seed)

    h = L.conv(h, ksize=3, stride=1, f_in=3, f_out=128, seed=rng.randint(123456), name='c1')
    h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b1'), FLAGS.lrelu_a)
    h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=128, seed=rng.randint(123456), name='c2')
    h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b2'), FLAGS.lrelu_a)
    h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=128, seed=rng.randint(123456), name='c3')
    h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b3'), FLAGS.lrelu_a)

    h = L.max_pool(h, ksize=2, stride=2)
    h = tf.nn.dropout(h, keep_prob=FLAGS.keep_prob_hidden, seed=rng.randint(123456)) if stochastic else h

    h = L.conv(h, ksize=3, stride=1, f_in=128, f_out=256, seed=rng.randint(123456), name='c4')
    h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b4'), FLAGS.lrelu_a)
    h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=256, seed=rng.randint(123456), name='c5')
    h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b5'), FLAGS.lrelu_a)
    h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=256, seed=rng.randint(123456), name='c6')
    h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b6'), FLAGS.lrelu_a)

    h = L.max_pool(h, ksize=2, stride=2)
    h = tf.nn.dropout(h, keep_prob=FLAGS.keep_prob_hidden, seed=rng.randint(123456)) if stochastic else h

    h = L.conv(h, ksize=3, stride=1, f_in=256, f_out=512, seed=rng.randint(123456), padding="VALID", name='c7')
    h = L.lrelu(L.bn(h, 512, is_training=is_training, update_batch_stats=update_batch_stats, name='b7'), FLAGS.lrelu_a)
    h = L.conv(h, ksize=1, stride=1, f_in=512, f_out=256, seed=rng.randint(123456), name='c8')
    h = L.lrelu(L.bn(h, 256, is_training=is_training, update_batch_stats=update_batch_stats, name='b8'), FLAGS.lrelu_a)
    h = L.conv(h, ksize=1, stride=1, f_in=256, f_out=128, seed=rng.randint(123456), name='c9')
    h = L.lrelu(L.bn(h, 128, is_training=is_training, update_batch_stats=update_batch_stats, name='b9'), FLAGS.lrelu_a)

    h1 = tf.reduce_mean(h, reduction_indices=[1, 2])  # Features to be aligned
    h = L.fc(h1, 128, 10, seed=rng.randint(123456), name='fc')

    if FLAGS.top_bn:
        h = L.bn(h, 10, is_training=is_training,
                 update_batch_stats=update_batch_stats, name='bfc')

    return h, h1 
开发者ID:qinenergy,项目名称:adanet,代码行数:42,代码来源:cnn.py


注:本文中的layers.conv方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。