当前位置: 首页>>代码示例>>Python>>正文


Python layers.classification_loss方法代码示例

本文整理汇总了Python中layers.classification_loss方法的典型用法代码示例。如果您正苦于以下问题:Python layers.classification_loss方法的具体用法?Python layers.classification_loss怎么用?Python layers.classification_loss使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在layers的用法示例。


在下文中一共展示了layers.classification_loss方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: classifier_graph

# 需要导入模块: import layers [as 别名]
# 或者: from layers import classification_loss [as 别名]
def classifier_graph(self):
    """Constructs classifier graph from inputs to classifier loss.

    * Caches the VatxtInput object in `self.cl_inputs`
    * Caches tensors: `cl_embedded`, `cl_logits`, `cl_loss`

    Returns:
      loss: scalar float.
    """
    inputs = _inputs('train', pretrain=False)
    self.cl_inputs = inputs
    embedded = self.layers['embedding'](inputs.tokens)
    self.tensors['cl_embedded'] = embedded

    _, next_state, logits, loss = self.cl_loss_from_embedding(
        embedded, return_intermediates=True)
    tf.summary.scalar('classification_loss', loss)
    self.tensors['cl_logits'] = logits
    self.tensors['cl_loss'] = loss

    acc = layers_lib.accuracy(logits, inputs.labels, inputs.weights)
    tf.summary.scalar('accuracy', acc)

    adv_loss = (self.adversarial_loss() * tf.constant(
        FLAGS.adv_reg_coeff, name='adv_reg_coeff'))
    tf.summary.scalar('adversarial_loss', adv_loss)

    total_loss = loss + adv_loss
    tf.summary.scalar('total_classification_loss', total_loss)

    with tf.control_dependencies([inputs.save_state(next_state)]):
      total_loss = tf.identity(total_loss)

    return total_loss 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:36,代码来源:graphs.py

示例2: cl_loss_from_embedding

# 需要导入模块: import layers [as 别名]
# 或者: from layers import classification_loss [as 别名]
def cl_loss_from_embedding(self,
                             embedded,
                             inputs=None,
                             return_intermediates=False):
    """Compute classification loss from embedding.

    Args:
      embedded: 3-D float Tensor [batch_size, num_timesteps, embedding_dim]
      inputs: VatxtInput, defaults to self.cl_inputs.
      return_intermediates: bool, whether to return intermediate tensors or only
        the final loss.

    Returns:
      If return_intermediates is True:
        lstm_out, next_state, logits, loss
      Else:
        loss
    """
    if inputs is None:
      inputs = self.cl_inputs

    lstm_out, next_state = self.layers['lstm'](embedded, inputs.state,
                                               inputs.length)
    logits = self.layers['cl_logits'](lstm_out)
    loss = layers_lib.classification_loss(logits, inputs.labels, inputs.weights)

    if return_intermediates:
      return lstm_out, next_state, logits, loss
    else:
      return loss 
开发者ID:ringringyi,项目名称:DOTA_models,代码行数:32,代码来源:graphs.py

示例3: classifier_graph

# 需要导入模块: import layers [as 别名]
# 或者: from layers import classification_loss [as 别名]
def classifier_graph(self):
    """Constructs classifier graph from inputs to classifier loss.

    * Caches the VatxtInput object in `self.cl_inputs`
    * Caches tensors: `cl_embedded`, `cl_logits`, `cl_loss`

    Returns:
      loss: scalar float.
    """
    inputs = _inputs('train', pretrain=False)
    self.cl_inputs = inputs
    embedded = self.layers['embedding'](inputs.tokens)
    self.tensors['cl_embedded'] = embedded

    _, next_state, logits, loss = self.cl_loss_from_embedding(
        embedded, return_intermediates=True)
    tf.summary.scalar('classification_loss', loss)
    self.tensors['cl_logits'] = logits
    self.tensors['cl_loss'] = loss

    if FLAGS.single_label:
      indices = tf.stack([tf.range(FLAGS.batch_size), inputs.length - 1], 1)
      labels = tf.expand_dims(tf.gather_nd(inputs.labels, indices), 1)
      weights = tf.expand_dims(tf.gather_nd(inputs.weights, indices), 1)
    else:
      labels = inputs.labels
      weights = inputs.weights
    acc = layers_lib.accuracy(logits, labels, weights)
    tf.summary.scalar('accuracy', acc)

    adv_loss = (self.adversarial_loss() * tf.constant(
        FLAGS.adv_reg_coeff, name='adv_reg_coeff'))
    tf.summary.scalar('adversarial_loss', adv_loss)

    total_loss = loss + adv_loss

    with tf.control_dependencies([inputs.save_state(next_state)]):
      total_loss = tf.identity(total_loss)
      tf.summary.scalar('total_classification_loss', total_loss)
    return total_loss 
开发者ID:itsamitgoel,项目名称:Gun-Detector,代码行数:42,代码来源:graphs.py

示例4: cl_loss_from_embedding

# 需要导入模块: import layers [as 别名]
# 或者: from layers import classification_loss [as 别名]
def cl_loss_from_embedding(self,
                             embedded,
                             inputs=None,
                             return_intermediates=False):
    """Compute classification loss from embedding.

    Args:
      embedded: 3-D float Tensor [batch_size, num_timesteps, embedding_dim]
      inputs: VatxtInput, defaults to self.cl_inputs.
      return_intermediates: bool, whether to return intermediate tensors or only
        the final loss.

    Returns:
      If return_intermediates is True:
        lstm_out, next_state, logits, loss
      Else:
        loss
    """
    if inputs is None:
      inputs = self.cl_inputs

    lstm_out, next_state = self.layers['lstm'](embedded, inputs.state,
                                               inputs.length)
    if FLAGS.single_label:
      indices = tf.stack([tf.range(FLAGS.batch_size), inputs.length - 1], 1)
      lstm_out = tf.expand_dims(tf.gather_nd(lstm_out, indices), 1)
      labels = tf.expand_dims(tf.gather_nd(inputs.labels, indices), 1)
      weights = tf.expand_dims(tf.gather_nd(inputs.weights, indices), 1)
    else:
      labels = inputs.labels
      weights = inputs.weights
    logits = self.layers['cl_logits'](lstm_out)
    loss = layers_lib.classification_loss(logits, labels, weights)

    if return_intermediates:
      return lstm_out, next_state, logits, loss
    else:
      return loss 
开发者ID:itsamitgoel,项目名称:Gun-Detector,代码行数:40,代码来源:graphs.py


注:本文中的layers.classification_loss方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。