当前位置: 首页>>代码示例>>Python>>正文


Python updates.nesterov_momentum方法代码示例

本文整理汇总了Python中lasagne.updates.nesterov_momentum方法的典型用法代码示例。如果您正苦于以下问题:Python updates.nesterov_momentum方法的具体用法?Python updates.nesterov_momentum怎么用?Python updates.nesterov_momentum使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在lasagne.updates的用法示例。


在下文中一共展示了updates.nesterov_momentum方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: net_updates

# 需要导入模块: from lasagne import updates [as 别名]
# 或者: from lasagne.updates import nesterov_momentum [as 别名]
def net_updates(net, loss, lr):    
                        
    # Get all trainable parameters (weights) of our net
    params = l.get_all_params(net, trainable=True)

    # We use the adam update, other options are available
    if cfg.OPTIMIZER == 'adam':
        param_updates = updates.adam(loss, params, learning_rate=lr, beta1=0.9)
    elif cfg.OPTIMIZER == 'nesterov':
        param_updates = updates.nesterov_momentum(loss, params, learning_rate=lr, momentum=0.9)
    elif cfg.OPTIMIZER == 'sgd':
        param_updates = updates.sgd(loss, params, learning_rate=lr)    

    return param_updates

#################### TRAIN FUNCTION ##################### 
开发者ID:kahst,项目名称:BirdCLEF-Baseline,代码行数:18,代码来源:lasagne_net.py

示例2: create_encoder_decoder_func

# 需要导入模块: from lasagne import updates [as 别名]
# 或者: from lasagne.updates import nesterov_momentum [as 别名]
def create_encoder_decoder_func(layers, apply_updates=False):
    X = T.fmatrix('X')
    X_batch = T.fmatrix('X_batch')

    X_hat = get_output(layers['l_decoder_out'], X, deterministic=False)

    # reconstruction loss
    encoder_decoder_loss = T.mean(
        T.mean(T.sqr(X - X_hat), axis=1)
    )

    if apply_updates:
        # all layers that participate in the forward pass should be updated
        encoder_decoder_params = get_all_params(
            layers['l_decoder_out'], trainable=True)

        encoder_decoder_updates = nesterov_momentum(
            encoder_decoder_loss, encoder_decoder_params, 0.01, 0.9)
    else:
        encoder_decoder_updates = None

    encoder_decoder_func = theano.function(
        inputs=[theano.In(X_batch)],
        outputs=encoder_decoder_loss,
        updates=encoder_decoder_updates,
        givens={
            X: X_batch,
        },
    )

    return encoder_decoder_func


# forward/backward (optional) pass for discriminator 
开发者ID:hjweide,项目名称:adversarial-autoencoder,代码行数:36,代码来源:theano_funcs.py

示例3: define_updates

# 需要导入模块: from lasagne import updates [as 别名]
# 或者: from lasagne.updates import nesterov_momentum [as 别名]
def define_updates(output_layer, X, Y):
    output_train = lasagne.layers.get_output(output_layer)
    output_test = lasagne.layers.get_output(output_layer, deterministic=True)

    # set up the loss that we aim to minimize when using cat cross entropy our Y should be ints not one-hot
    loss = lasagne.objectives.categorical_crossentropy(T.clip(output_train,0.000001,0.999999), Y)
    loss = loss.mean()

    acc = T.mean(T.eq(T.argmax(output_train, axis=1), Y), dtype=theano.config.floatX)

    # if using ResNet use L2 regularization
    all_layers = lasagne.layers.get_all_layers(output_layer)
    l2_penalty = lasagne.regularization.regularize_layer_params(all_layers, lasagne.regularization.l2) * P.L2_LAMBDA
    loss = loss + l2_penalty

    # set up loss functions for validation dataset
    test_loss = lasagne.objectives.categorical_crossentropy(T.clip(output_test,0.000001,0.999999), Y)
    test_loss = test_loss.mean()
    test_loss = test_loss + l2_penalty

    test_acc = T.mean(T.eq(T.argmax(output_test, axis=1), Y), dtype=theano.config.floatX)

    # get parameters from network and set up sgd with nesterov momentum to update parameters, l_r is shared var so it can be changed
    l_r = theano.shared(np.array(LR_SCHEDULE[0], dtype=theano.config.floatX))
    params = lasagne.layers.get_all_params(output_layer, trainable=True)
    updates = nesterov_momentum(loss, params, learning_rate=l_r, momentum=P.MOMENTUM)
    #updates = adam(loss, params, learning_rate=l_r)

    prediction_binary = T.argmax(output_train, axis=1)
    test_prediction_binary = T.argmax(output_test, axis=1)

    # set up training and prediction functions
    train_fn = theano.function(inputs=[X,Y], outputs=[loss, l2_penalty, acc, prediction_binary, output_train[:,1]], updates=updates)
    valid_fn = theano.function(inputs=[X,Y], outputs=[test_loss, l2_penalty, test_acc, test_prediction_binary, output_test[:,1]])

    return train_fn, valid_fn, l_r 
开发者ID:gzuidhof,项目名称:luna16,代码行数:38,代码来源:resnet.py

示例4: get_update_nesterov_momentum

# 需要导入模块: from lasagne import updates [as 别名]
# 或者: from lasagne.updates import nesterov_momentum [as 别名]
def get_update_nesterov_momentum(m=0.9):
    """
    Compute update with nesterov momentum
    """

    def update(all_grads, all_params, learning_rate):
        return nesterov_momentum(all_grads, all_params, learning_rate,
                                 momentum=m)

    return update 
开发者ID:CPJKU,项目名称:dcase_task2,代码行数:12,代码来源:parameter_updates.py

示例5: create_net

# 需要导入模块: from lasagne import updates [as 别名]
# 或者: from lasagne.updates import nesterov_momentum [as 别名]
def create_net(config, **kwargs):
    args = {
        'layers': config.layers,
        'batch_iterator_train': iterator.ResampleIterator(
            config, batch_size=config.get('batch_size_train')),
        'batch_iterator_test': iterator.SharedIterator(
            config, deterministic=True, 
            batch_size=config.get('batch_size_test')),
        'on_epoch_finished': [
            Schedule('update_learning_rate', config.get('schedule'),
                     weights_file=config.final_weights_file),
            SaveBestWeights(weights_file=config.weights_file, 
                            loss='kappa', greater_is_better=True,),
            SaveWeights(config.weights_epoch, every_n_epochs=5),
            SaveWeights(config.weights_best, every_n_epochs=1, only_best=True),
        ],
        'objective': get_objective(),
        'use_label_encoder': False,
        'eval_size': 0.1,
        'regression': True,
        'max_epochs': 1000,
        'verbose': 2,
        'update_learning_rate': theano.shared(
            util.float32(config.get('schedule')[0])),
        'update': nesterov_momentum,
        'update_momentum': 0.9,
        'custom_score': ('kappa', util.kappa),

    }
    args.update(kwargs)
    net = Net(**args)
    return net 
开发者ID:sveitser,项目名称:kaggle_diabetic,代码行数:34,代码来源:nn.py

示例6: __init__

# 需要导入模块: from lasagne import updates [as 别名]
# 或者: from lasagne.updates import nesterov_momentum [as 别名]
def __init__(self, isTrain, isOutlierRemoval, isNN=1):
        super(ClassificationNN, self).__init__(isTrain, isOutlierRemoval, isNN=1)
        # data preprocessing
        self.dataPreprocessing()

        self.net1 = NeuralNet(
                        layers=[  # three layers: one hidden layer
                            ('input', layers.InputLayer),
                            ('hidden', layers.DenseLayer),
                            #('hidden2', layers.DenseLayer),
                            ('output', layers.DenseLayer),
                            ],
                        # layer parameters:
                        input_shape=(None, 12),  # inut dimension is 12
                        hidden_num_units=6,  # number of units in hidden layer
                        #hidden2_num_units=3,  # number of units in hidden layer
                        output_nonlinearity=lasagne.nonlinearities.sigmoid,  # output layer uses sigmoid function
                        output_num_units=1,  # output dimension is 1

                        # optimization method:
                        update=nesterov_momentum,
                        update_learning_rate=0.002,
                        update_momentum=0.9,

                        regression=True,  # flag to indicate we're dealing with regression problem
                        max_epochs=25,  # we want to train this many epochs
                        verbose=0,
                        ) 
开发者ID:junlulocky,项目名称:AirTicketPredicting,代码行数:30,代码来源:ClassificationNN.py

示例7: create_discriminator_func

# 需要导入模块: from lasagne import updates [as 别名]
# 或者: from lasagne.updates import nesterov_momentum [as 别名]
def create_discriminator_func(layers, apply_updates=False):
    X = T.fmatrix('X')
    pz = T.fmatrix('pz')

    X_batch = T.fmatrix('X_batch')
    pz_batch = T.fmatrix('pz_batch')

    # the discriminator receives samples from q(z|x) and p(z)
    # and should predict to which distribution each sample belongs
    discriminator_outputs = get_output(
        layers['l_discriminator_out'],
        inputs={
            layers['l_prior_in']: pz,
            layers['l_encoder_in']: X,
        },
        deterministic=False,
    )

    # label samples from q(z|x) as 1 and samples from p(z) as 0
    discriminator_targets = T.vertical_stack(
        T.ones((X_batch.shape[0], 1)),
        T.zeros((pz_batch.shape[0], 1))
    )

    discriminator_loss = T.mean(
        T.nnet.binary_crossentropy(
            discriminator_outputs,
            discriminator_targets,
        )
    )

    if apply_updates:
        # only layers that are part of the discriminator should be updated
        discriminator_params = get_all_params(
            layers['l_discriminator_out'], trainable=True, discriminator=True)

        discriminator_updates = nesterov_momentum(
            discriminator_loss, discriminator_params, 0.1, 0.0)
    else:
        discriminator_updates = None

    discriminator_func = theano.function(
        inputs=[
            theano.In(X_batch),
            theano.In(pz_batch),
        ],
        outputs=discriminator_loss,
        updates=discriminator_updates,
        givens={
            X: X_batch,
            pz: pz_batch,
        },
    )

    return discriminator_func


# forward/backward (optional) pass for the generator
# note that the generator is the same network as the encoder,
# but updated separately 
开发者ID:hjweide,项目名称:adversarial-autoencoder,代码行数:62,代码来源:theano_funcs.py

示例8: create_generator_func

# 需要导入模块: from lasagne import updates [as 别名]
# 或者: from lasagne.updates import nesterov_momentum [as 别名]
def create_generator_func(layers, apply_updates=False):
    X = T.fmatrix('X')
    X_batch = T.fmatrix('X_batch')

    # no need to pass an input to l_prior_in here
    generator_outputs = get_output(
        layers['l_encoder_out'], X, deterministic=False)

    # so pass the output of the generator as the output of the concat layer
    discriminator_outputs = get_output(
        layers['l_discriminator_out'],
        inputs={
            layers['l_prior_encoder_concat']: generator_outputs,
        },
        deterministic=False
    )

    # the discriminator learns to predict 1 for q(z|x),
    # so the generator should fool it into predicting 0
    generator_targets = T.zeros_like(X_batch.shape[0])

    # so the generator needs to push the discriminator's output to 0
    generator_loss = T.mean(
        T.nnet.binary_crossentropy(
            discriminator_outputs,
            generator_targets,
        )
    )

    if apply_updates:
        # only layers that are part of the generator (i.e., encoder)
        # should be updated
        generator_params = get_all_params(
            layers['l_discriminator_out'], trainable=True, generator=True)

        generator_updates = nesterov_momentum(
            generator_loss, generator_params, 0.1, 0.0)
    else:
        generator_updates = None

    generator_func = theano.function(
        inputs=[
            theano.In(X_batch),
        ],
        outputs=generator_loss,
        updates=generator_updates,
        givens={
            X: X_batch,
        },
    )

    return generator_func 
开发者ID:hjweide,项目名称:adversarial-autoencoder,代码行数:54,代码来源:theano_funcs.py

示例9: get_updates

# 需要导入模块: from lasagne import updates [as 别名]
# 或者: from lasagne.updates import nesterov_momentum [as 别名]
def get_updates(nnet,
                train_obj,
                trainable_params,
                solver=None):

    implemented_solvers = ("sgd", "momentum", "nesterov", "adagrad", "rmsprop", "adadelta", "adam", "adamax")

    if solver not in implemented_solvers:
        nnet.sgd_solver = "adam"
    else:
        nnet.sgd_solver = solver

    if nnet.sgd_solver == "sgd":
        updates = l_updates.sgd(train_obj,
                                trainable_params,
                                learning_rate=Cfg.learning_rate)
    elif nnet.sgd_solver == "momentum":
        updates = l_updates.momentum(train_obj,
                                     trainable_params,
                                     learning_rate=Cfg.learning_rate,
                                     momentum=Cfg.momentum)
    elif nnet.sgd_solver == "nesterov":
        updates = l_updates.nesterov_momentum(train_obj,
                                              trainable_params,
                                              learning_rate=Cfg.learning_rate,
                                              momentum=Cfg.momentum)
    elif nnet.sgd_solver == "adagrad":
        updates = l_updates.adagrad(train_obj,
                                    trainable_params,
                                    learning_rate=Cfg.learning_rate)
    elif nnet.sgd_solver == "rmsprop":
        updates = l_updates.rmsprop(train_obj,
                                    trainable_params,
                                    learning_rate=Cfg.learning_rate,
                                    rho=Cfg.rho)
    elif nnet.sgd_solver == "adadelta":
        updates = l_updates.adadelta(train_obj,
                                     trainable_params,
                                     learning_rate=Cfg.learning_rate,
                                     rho=Cfg.rho)
    elif nnet.sgd_solver == "adam":
        updates = l_updates.adam(train_obj,
                                 trainable_params,
                                 learning_rate=Cfg.learning_rate)
    elif nnet.sgd_solver == "adamax":
        updates = l_updates.adamax(train_obj,
                                   trainable_params,
                                   learning_rate=Cfg.learning_rate)

    return updates 
开发者ID:lukasruff,项目名称:Deep-SVDD,代码行数:52,代码来源:updates.py

示例10: __init__

# 需要导入模块: from lasagne import updates [as 别名]
# 或者: from lasagne.updates import nesterov_momentum [as 别名]
def __init__(self, isTrain, isOutlierRemoval=0):
        super(ClassificationUniformBlending, self).__init__(isTrain, isOutlierRemoval)
        # data preprocessing
        self.dataPreprocessing()

        # create logistic regression object
        self.logreg = linear_model.LogisticRegression(tol=1e-6, penalty='l1', C=0.0010985411419875584)

        # create adaboost object
        self.dt_stump = DecisionTreeClassifier(max_depth=10)
        self.ada = AdaBoostClassifier(
            base_estimator=self.dt_stump,
            learning_rate=1,
            n_estimators=5,
            algorithm="SAMME.R")

        # create knn object
        self.knn = neighbors.KNeighborsClassifier(2, weights='uniform')

        # create decision tree object
        self.decisiontree = DecisionTreeClassifier(max_depth=45, max_features='log2')

        # create neural network object
        self.net1 = NeuralNet(
                        layers=[  # three layers: one hidden layer
                            ('input', layers.InputLayer),
                            ('hidden', layers.DenseLayer),
                            #('hidden2', layers.DenseLayer),
                            ('output', layers.DenseLayer),
                            ],
                        # layer parameters:
                        input_shape=(None, 12),  # inut dimension is 12
                        hidden_num_units=6,  # number of units in hidden layer
                        #hidden2_num_units=3,  # number of units in hidden layer
                        output_nonlinearity=lasagne.nonlinearities.sigmoid,  # output layer uses sigmoid function
                        output_num_units=1,  # output dimension is 1

                        # optimization method:
                        update=nesterov_momentum,
                        update_learning_rate=0.002,
                        update_momentum=0.9,

                        regression=True,  # flag to indicate we're dealing with regression problem
                        max_epochs=25,  # we want to train this many epochs
                        verbose=0,
                        )

        # create PLA object
        self.pla = Perceptron()

        # create random forest object
        self.rf = RandomForestClassifier(max_features='log2', n_estimators=20, max_depth=30) 
开发者ID:junlulocky,项目名称:AirTicketPredicting,代码行数:54,代码来源:ClassificationUniformBlending.py

示例11: __init__

# 需要导入模块: from lasagne import updates [as 别名]
# 或者: from lasagne.updates import nesterov_momentum [as 别名]
def __init__(self, isTrain, isOutlierRemoval=0):
        super(ClassificationLinearBlending, self).__init__(isTrain, isOutlierRemoval)
        # data preprocessing
        self.dataPreprocessing()

        # create logistic regression object
        self.logreg = linear_model.LogisticRegression(tol=1e-6, penalty='l1', C=0.0010985411419875584)

        # create adaboost object
        self.dt_stump = DecisionTreeClassifier(max_depth=10)
        self.ada = AdaBoostClassifier(
            base_estimator=self.dt_stump,
            learning_rate=1,
            n_estimators=5,
            algorithm="SAMME.R")

        # create knn object
        self.knn = neighbors.KNeighborsClassifier(6, weights='uniform')

        # create decision tree object
        self.decisiontree = DecisionTreeClassifier(max_depth=50)

        # create neural network object
        self.net1 = NeuralNet(
                        layers=[  # three layers: one hidden layer
                            ('input', layers.InputLayer),
                            ('hidden', layers.DenseLayer),
                            #('hidden2', layers.DenseLayer),
                            ('output', layers.DenseLayer),
                            ],
                        # layer parameters:
                        input_shape=(None, 12),  # inut dimension is 12
                        hidden_num_units=6,  # number of units in hidden layer
                        #hidden2_num_units=3,  # number of units in hidden layer
                        output_nonlinearity=lasagne.nonlinearities.sigmoid,  # output layer uses sigmoid function
                        output_num_units=1,  # output dimension is 1

                        # optimization method:
                        update=nesterov_momentum,
                        update_learning_rate=0.002,
                        update_momentum=0.9,

                        regression=True,  # flag to indicate we're dealing with regression problem
                        max_epochs=25,  # we want to train this many epochs
                        verbose=0,
                        ) 
开发者ID:junlulocky,项目名称:AirTicketPredicting,代码行数:48,代码来源:ClassificationLinearBlending.py

示例12: __init__

# 需要导入模块: from lasagne import updates [as 别名]
# 或者: from lasagne.updates import nesterov_momentum [as 别名]
def __init__(self, conf):
        self.conf = conf

        if self.conf.act == "linear":
            self.conf.act = linear
        elif self.conf.act == "sigmoid":
            self.conf.act = sigmoid
        elif self.conf.act == "relu":
            self.conf.act = rectify
        elif self.conf.act == "tanh":
            self.conf.act = tanh
        else:
            raise ValueError("Unknown activation function", self.conf.act)

        input_var_first   = T.matrix('inputs1')
        input_var_second  = T.matrix('inputs2')
        target_var        = T.matrix('targets')

        # create network        
        self.autoencoder, encoder_first, encoder_second = self.__create_toplogy__(input_var_first, input_var_second)
        
        self.out = get_output(self.autoencoder)
        
        loss = squared_error(self.out, target_var)
        loss = loss.mean()
        
        params = get_all_params(self.autoencoder, trainable=True)
        updates = nesterov_momentum(loss, params, learning_rate=self.conf.lr, momentum=self.conf.momentum)
        
        # training function
        self.train_fn = theano.function([input_var_first, input_var_second, target_var], loss, updates=updates)
        
        # fuction to reconstruct
        test_reconstruction = get_output(self.autoencoder, deterministic=True)
        self.reconstruction_fn = theano.function([input_var_first, input_var_second], test_reconstruction)
        
        # encoding function
        test_encode = get_output([encoder_first, encoder_second], deterministic=True)
        self.encoding_fn = theano.function([input_var_first, input_var_second], test_encode)

        # utils
        blas = lambda name, ndarray: scipy.linalg.get_blas_funcs((name,), (ndarray,))[0]
        self.blas_nrm2 = blas('nrm2', np.array([], dtype=float))
        self.blas_scal = blas('scal', np.array([], dtype=float))

        # load weights if necessary
        if self.conf.load_model is not None:
            self.load_model() 
开发者ID:v-v,项目名称:BiDNN,代码行数:50,代码来源:bidnn.py


注:本文中的lasagne.updates.nesterov_momentum方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。