当前位置: 首页>>代码示例>>Python>>正文


Python updates.adagrad方法代码示例

本文整理汇总了Python中lasagne.updates.adagrad方法的典型用法代码示例。如果您正苦于以下问题:Python updates.adagrad方法的具体用法?Python updates.adagrad怎么用?Python updates.adagrad使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在lasagne.updates的用法示例。


在下文中一共展示了updates.adagrad方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: create_iter_functions

# 需要导入模块: from lasagne import updates [as 别名]
# 或者: from lasagne.updates import adagrad [as 别名]
def create_iter_functions(self, dataset, output_layer, X_tensor_type=T.matrix):
        batch_index = T.iscalar('batch_index')
        X_batch = X_tensor_type('x')
        y_batch = T.ivector('y')

        batch_slice = slice(batch_index * self.batch_size, (batch_index + 1) * self.batch_size)

        objective = Objective(output_layer, loss_function=categorical_crossentropy)

        loss_train = objective.get_loss(X_batch, target=y_batch)
        loss_eval = objective.get_loss(X_batch, target=y_batch, deterministic=True)

        pred = T.argmax(output_layer.get_output(X_batch, deterministic=True), axis=1)
        proba = output_layer.get_output(X_batch, deterministic=True)
        accuracy = T.mean(T.eq(pred, y_batch), dtype=theano.config.floatX)

        all_params = get_all_params(output_layer)
        updates = adagrad(loss_train, all_params, self.lr, self.epsilon)

        iter_train = theano.function(
            [batch_index], loss_train,
            updates=updates,
            givens={
                X_batch: dataset['X_train'][batch_slice],
                y_batch: dataset['y_train'][batch_slice],
            },
            on_unused_input='ignore',
        )

        iter_valid = None
        if self.use_valid:
            iter_valid = theano.function(
                [batch_index], [loss_eval, accuracy, proba],
                givens={
                    X_batch: dataset['X_valid'][batch_slice],
                    y_batch: dataset['y_valid'][batch_slice],
                },
            )

        return dict(train=iter_train, valid=iter_valid) 
开发者ID:ahara,项目名称:kaggle_otto,代码行数:42,代码来源:nn_adagrad_pca.py

示例2: create_iter_functions

# 需要导入模块: from lasagne import updates [as 别名]
# 或者: from lasagne.updates import adagrad [as 别名]
def create_iter_functions(self, dataset, output_layer, X_tensor_type=T.matrix):
        batch_index = T.iscalar('batch_index')
        X_batch = X_tensor_type('x')
        y_batch = T.ivector('y')

        batch_slice = slice(batch_index * self.batch_size, (batch_index + 1) * self.batch_size)

        objective = Objective(output_layer, loss_function=categorical_crossentropy)

        loss_train = objective.get_loss(X_batch, target=y_batch)
        loss_eval = objective.get_loss(X_batch, target=y_batch, deterministic=True)

        pred = T.argmax(output_layer.get_output(X_batch, deterministic=True), axis=1)
        proba = output_layer.get_output(X_batch, deterministic=True)
        accuracy = T.mean(T.eq(pred, y_batch), dtype=theano.config.floatX)

        all_params = get_all_params(output_layer)
        updates = adagrad(loss_train, all_params, self.lr, self.rho)

        iter_train = theano.function(
            [batch_index], loss_train,
            updates=updates,
            givens={
                X_batch: dataset['X_train'][batch_slice],
                y_batch: dataset['y_train'][batch_slice],
            },
            on_unused_input='ignore',
        )

        iter_valid = None
        if self.use_valid:
            iter_valid = theano.function(
                [batch_index], [loss_eval, accuracy, proba],
                givens={
                    X_batch: dataset['X_valid'][batch_slice],
                    y_batch: dataset['y_valid'][batch_slice],
                },
            )

        return dict(train=iter_train, valid=iter_valid) 
开发者ID:ahara,项目名称:kaggle_otto,代码行数:42,代码来源:nn_adagrad_log.py

示例3: get_nn_model

# 需要导入模块: from lasagne import updates [as 别名]
# 或者: from lasagne.updates import adagrad [as 别名]
def get_nn_model(shape):
    np.random.seed(9)
    model = NeuralNet(
        layers=[  
            ('input', layers.InputLayer),
            ('hidden1', layers.DenseLayer),
            ('hidden2', layers.DenseLayer),
            ('output', layers.DenseLayer),
            ],
        input_shape=(None,  shape[1]),
        hidden1_num_units=16,  # number of units in hidden layer
        hidden1_nonlinearity=sigmoid,
        hidden2_num_units=8,  # number of units in hidden layer
        hidden2_nonlinearity=sigmoid,
        output_nonlinearity=softmax, 
        output_num_units=2,  # target values

        # optimization method:
        update=adagrad,
        update_learning_rate=theano.shared(np.float32(0.1)),

        on_epoch_finished=[
        ],
        use_label_encoder=False,

        batch_iterator_train=BatchIterator(batch_size=500),
        regression=False,  # flag to indicate we're dealing with regression problem
        max_epochs=900,  # we want to train this many epochs
        verbose=1,
        eval_size=0.0,
        )
    return model 
开发者ID:Gzsiceberg,项目名称:kaggle-avito,代码行数:34,代码来源:stack.py

示例4: __init__

# 需要导入模块: from lasagne import updates [as 别名]
# 或者: from lasagne.updates import adagrad [as 别名]
def __init__(self, n_inputs, n_outputs, regression, multiclass=False, depth=5, n_estimators=20, n_hidden=128, learning_rate=0.01, num_epochs=500, pi_iters=20, sgd_iters=10, batch_size=1000, momentum=0.0, dropout=0.0, loss=None, update=adagrad):
        """
        Parameters
        ----------
        n_inputs : number of input features
        n_outputs : number of classes to predict (1 for regression)
            for 2 class classification n_outputs should be 2, not 1
        regression : True for regression, False for classification
        multiclass : not used
        depth : depth of each tree in the ensemble
        n_estimators : number of trees in the ensemble
        n_hidden : number of neurons in the hidden layer
        pi_iters : number of iterations for the iterative algorithm that updates pi
        sgd_iters : number of full iterations of sgd between two consequtive updates of pi
        loss : theano loss function. If None, squared error will be used for regression and
            cross entropy will be used for classification
        update : theano update function
        """
        self._depth = depth
        self._n_estimators = n_estimators
        self._n_hidden = n_hidden
        self._n_outputs = n_outputs
        self._loss = loss
        self._regression = regression
        self._multiclass = multiclass
        self._learning_rate = learning_rate
        self._num_epochs = num_epochs
        self._pi_iters = pi_iters
        self._sgd_iters = sgd_iters
        self._batch_size = batch_size
        self._momentum = momentum
        self._update = update

        self.t_input = T.matrix('input')
        self.t_label = T.matrix('output')

        self._cached_trainable_params = None
        self._cached_params = None

        self._n_net_out = n_estimators * ((1 << depth) - 1)

        self.l_input = InputLayer((None, n_inputs))
        self.l_dense1 = DenseLayer(self.l_input, self._n_hidden, nonlinearity=rectify)
        if dropout != 0:
            self.l_dense1 = DropoutLayer(self.l_dense1, p=dropout)
        if not __DEBUG_NO_FOREST__:
            self.l_dense2 = DenseLayer(self.l_dense1, self._n_net_out, nonlinearity=sigmoid)
            self.l_forest = NeuralForestLayer(self.l_dense2, self._depth, self._n_estimators, self._n_outputs, self._pi_iters)
        else:
            self.l_forest = DenseLayer(self.l_dense1, self._n_outputs, nonlinearity=softmax) 
开发者ID:SkidanovAlex,项目名称:ShallowNeuralDecisionForest,代码行数:52,代码来源:neuralforest.py

示例5: get_updates

# 需要导入模块: from lasagne import updates [as 别名]
# 或者: from lasagne.updates import adagrad [as 别名]
def get_updates(nnet,
                train_obj,
                trainable_params,
                solver=None):

    implemented_solvers = ("sgd", "momentum", "nesterov", "adagrad", "rmsprop", "adadelta", "adam", "adamax")

    if solver not in implemented_solvers:
        nnet.sgd_solver = "adam"
    else:
        nnet.sgd_solver = solver

    if nnet.sgd_solver == "sgd":
        updates = l_updates.sgd(train_obj,
                                trainable_params,
                                learning_rate=Cfg.learning_rate)
    elif nnet.sgd_solver == "momentum":
        updates = l_updates.momentum(train_obj,
                                     trainable_params,
                                     learning_rate=Cfg.learning_rate,
                                     momentum=Cfg.momentum)
    elif nnet.sgd_solver == "nesterov":
        updates = l_updates.nesterov_momentum(train_obj,
                                              trainable_params,
                                              learning_rate=Cfg.learning_rate,
                                              momentum=Cfg.momentum)
    elif nnet.sgd_solver == "adagrad":
        updates = l_updates.adagrad(train_obj,
                                    trainable_params,
                                    learning_rate=Cfg.learning_rate)
    elif nnet.sgd_solver == "rmsprop":
        updates = l_updates.rmsprop(train_obj,
                                    trainable_params,
                                    learning_rate=Cfg.learning_rate,
                                    rho=Cfg.rho)
    elif nnet.sgd_solver == "adadelta":
        updates = l_updates.adadelta(train_obj,
                                     trainable_params,
                                     learning_rate=Cfg.learning_rate,
                                     rho=Cfg.rho)
    elif nnet.sgd_solver == "adam":
        updates = l_updates.adam(train_obj,
                                 trainable_params,
                                 learning_rate=Cfg.learning_rate)
    elif nnet.sgd_solver == "adamax":
        updates = l_updates.adamax(train_obj,
                                   trainable_params,
                                   learning_rate=Cfg.learning_rate)

    return updates 
开发者ID:lukasruff,项目名称:Deep-SVDD,代码行数:52,代码来源:updates.py


注:本文中的lasagne.updates.adagrad方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。