当前位置: 首页>>代码示例>>Python>>正文


Python objectives.categorical_crossentropy方法代码示例

本文整理汇总了Python中lasagne.objectives.categorical_crossentropy方法的典型用法代码示例。如果您正苦于以下问题:Python objectives.categorical_crossentropy方法的具体用法?Python objectives.categorical_crossentropy怎么用?Python objectives.categorical_crossentropy使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在lasagne.objectives的用法示例。


在下文中一共展示了objectives.categorical_crossentropy方法的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build_model

# 需要导入模块: from lasagne import objectives [as 别名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 别名]
def build_model(self):
        
        import theano.tensor as T
        self.x = T.ftensor4('x')
        self.y = T.lvector('y')
        self.lr = T.scalar('lr')
        
        net = build_model_vgg16(input_shape=(None, 3, 224, 224), verbose=self.verbose)
        self.output_layer = net['prob']
        
        from lasagne.layers import get_output
        self.output = lasagne.layers.get_output(self.output_layer, self.x, deterministic=False)
        self.cost = lasagne.objectives.categorical_crossentropy(self.output, self.y).mean()
        from lasagne.objectives import categorical_accuracy
        self.error = 1-categorical_accuracy(self.output, self.y, top_k=1).mean()
        self.error_top_5 = 1-categorical_accuracy(self.output, self.y, top_k=5).mean() 
开发者ID:uoguelph-mlrg,项目名称:Theano-MPI,代码行数:18,代码来源:vgg16.py

示例2: compile_val

# 需要导入模块: from lasagne import objectives [as 别名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 别名]
def compile_val(self):

        if self.verbose: print('compiling validation function...')
        
        import theano
        
        from lasagne.layers import get_output
        
        output_val = lasagne.layers.get_output(self.output_layer, self.x, deterministic=True)
        
        from lasagne.objectives import categorical_accuracy, categorical_crossentropy
        
        cost = categorical_crossentropy(output_val, self.y).mean()
        error = 1-categorical_accuracy(output_val, self.y, top_k=1).mean()
        error_top_5 = 1-categorical_accuracy(output_val, self.y, top_k=5).mean()
        
        self.val_fn=  theano.function([self.subb_ind], [cost,error,error_top_5], updates=[], 
                                          givens=[(self.x, self.shared_x_slice),
                                                  (self.y, self.shared_y_slice)]
                                                                ) 
开发者ID:uoguelph-mlrg,项目名称:Theano-MPI,代码行数:22,代码来源:vgg16.py

示例3: build_model

# 需要导入模块: from lasagne import objectives [as 别名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 别名]
def build_model(self):
        
        import theano.tensor as T
        self.x = T.ftensor4('x')
        self.y = T.lvector('y')
        self.lr = T.scalar('lr')
        
        net = build_model_resnet50(input_shape=(None, 3, 224, 224))
        
        if self.verbose: print('Total number of layers:', len(lasagne.layers.get_all_layers(net['prob'])))
        
        self.output_layer = net['prob']
        
        from lasagne.layers import get_output
        self.output = lasagne.layers.get_output(self.output_layer, self.x, deterministic=False)
        self.cost = lasagne.objectives.categorical_crossentropy(self.output, self.y).mean()
        from lasagne.objectives import categorical_accuracy
        self.error = 1-categorical_accuracy(self.output, self.y, top_k=1).mean()
        self.error_top_5 = 1-categorical_accuracy(self.output, self.y, top_k=5).mean() 
开发者ID:uoguelph-mlrg,项目名称:Theano-MPI,代码行数:21,代码来源:resnet50.py

示例4: build_model

# 需要导入模块: from lasagne import objectives [as 别名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 别名]
def build_model(self):
        
        import theano.tensor as T
        self.x = T.ftensor4('x')
        self.y = T.lvector('y')
        self.lr = T.scalar('lr')
        
        net = build_model_resnet152(input_shape=(None, 3, 224, 224))
        
        self.output_layer = net['prob']
        
        from lasagne.layers import get_output
        self.output = lasagne.layers.get_output(self.output_layer, self.x, deterministic=False)
        self.cost = lasagne.objectives.categorical_crossentropy(self.output, self.y).mean()
        from lasagne.objectives import categorical_accuracy
        self.error = 1-categorical_accuracy(self.output, self.y, top_k=1).mean()
        self.error_top_5 = 1-categorical_accuracy(self.output, self.y, top_k=5).mean() 
开发者ID:uoguelph-mlrg,项目名称:Theano-MPI,代码行数:19,代码来源:resnet152_outdated.py

示例5: calc_loss

# 需要导入模块: from lasagne import objectives [as 别名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 别名]
def calc_loss(prediction, targets):

    #categorical crossentropy is the best choice for a multi-class softmax output
    loss = T.mean(objectives.categorical_crossentropy(prediction, targets))
    
    return loss 
开发者ID:kahst,项目名称:AcousticEventDetection,代码行数:8,代码来源:AED_train.py

示例6: calc_loss

# 需要导入模块: from lasagne import objectives [as 别名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 别名]
def calc_loss(prediction, targets):

    # Categorical crossentropy is the best choice for a multi-class softmax output
    loss = T.mean(objectives.categorical_crossentropy(prediction, targets))
    
    return loss 
开发者ID:kahst,项目名称:BirdCLEF-Baseline,代码行数:8,代码来源:lasagne_net.py

示例7: __init__

# 需要导入模块: from lasagne import objectives [as 别名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 别名]
def __init__(self, x, y, args):
        self.params_theta = []
        self.params_lambda = []
        self.params_weight = []
        if args.dataset == 'mnist':
            input_size = (None, 1, 28, 28)
        elif args.dataset == 'cifar10':
            input_size = (None, 3, 32, 32)
        else:
            raise AssertionError
        layers = [ll.InputLayer(input_size)]
        self.penalty = theano.shared(np.array(0.))

        #conv1
        layers.append(Conv2DLayerWithReg(args, layers[-1], 20, 5))
        self.add_params_to_self(args, layers[-1])
        layers.append(ll.MaxPool2DLayer(layers[-1], pool_size=2, stride=2))
        #conv1
        layers.append(Conv2DLayerWithReg(args, layers[-1], 50, 5))
        self.add_params_to_self(args, layers[-1])
        layers.append(ll.MaxPool2DLayer(layers[-1], pool_size=2, stride=2))
        #fc1
        layers.append(DenseLayerWithReg(args, layers[-1], num_units=500))
        self.add_params_to_self(args, layers[-1])
        #softmax
        layers.append(DenseLayerWithReg(args, layers[-1], num_units=10, nonlinearity=nonlinearities.softmax))
        self.add_params_to_self(args, layers[-1])

        self.layers = layers
        self.y = ll.get_output(layers[-1], x, deterministic=False)
        self.prediction = T.argmax(self.y, axis=1)
        # self.penalty = penalty if penalty != 0. else T.constant(0.)
        print(self.params_lambda)
        # time.sleep(20)
        # cost function
        self.loss = T.mean(categorical_crossentropy(self.y, y))
        self.lossWithPenalty = T.add(self.loss, self.penalty)
        print "loss and losswithpenalty", type(self.loss), type(self.lossWithPenalty) 
开发者ID:bigaidream-projects,项目名称:drmad,代码行数:40,代码来源:models.py

示例8: create_iter_functions

# 需要导入模块: from lasagne import objectives [as 别名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 别名]
def create_iter_functions(self, dataset, output_layer, X_tensor_type=T.matrix):
        batch_index = T.iscalar('batch_index')
        X_batch = X_tensor_type('x')
        y_batch = T.ivector('y')

        batch_slice = slice(batch_index * self.batch_size, (batch_index + 1) * self.batch_size)

        objective = Objective(output_layer, loss_function=categorical_crossentropy)

        loss_train = objective.get_loss(X_batch, target=y_batch)
        loss_eval = objective.get_loss(X_batch, target=y_batch, deterministic=True)

        pred = T.argmax(output_layer.get_output(X_batch, deterministic=True), axis=1)
        proba = output_layer.get_output(X_batch, deterministic=True)
        accuracy = T.mean(T.eq(pred, y_batch), dtype=theano.config.floatX)

        all_params = get_all_params(output_layer)
        updates = adagrad(loss_train, all_params, self.lr, self.epsilon)

        iter_train = theano.function(
            [batch_index], loss_train,
            updates=updates,
            givens={
                X_batch: dataset['X_train'][batch_slice],
                y_batch: dataset['y_train'][batch_slice],
            },
            on_unused_input='ignore',
        )

        iter_valid = None
        if self.use_valid:
            iter_valid = theano.function(
                [batch_index], [loss_eval, accuracy, proba],
                givens={
                    X_batch: dataset['X_valid'][batch_slice],
                    y_batch: dataset['y_valid'][batch_slice],
                },
            )

        return dict(train=iter_train, valid=iter_valid) 
开发者ID:ahara,项目名称:kaggle_otto,代码行数:42,代码来源:nn_adagrad_pca.py

示例9: create_iter_functions

# 需要导入模块: from lasagne import objectives [as 别名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 别名]
def create_iter_functions(self, dataset, output_layer, X_tensor_type=T.matrix):
        batch_index = T.iscalar('batch_index')
        X_batch = X_tensor_type('x')
        y_batch = T.ivector('y')

        batch_slice = slice(batch_index * self.batch_size, (batch_index + 1) * self.batch_size)

        objective = Objective(output_layer, loss_function=categorical_crossentropy)

        loss_train = objective.get_loss(X_batch, target=y_batch)
        loss_eval = objective.get_loss(X_batch, target=y_batch, deterministic=True)

        pred = T.argmax(output_layer.get_output(X_batch, deterministic=True), axis=1)
        proba = output_layer.get_output(X_batch, deterministic=True)
        accuracy = T.mean(T.eq(pred, y_batch), dtype=theano.config.floatX)

        all_params = get_all_params(output_layer)
        updates = adagrad(loss_train, all_params, self.lr, self.rho)

        iter_train = theano.function(
            [batch_index], loss_train,
            updates=updates,
            givens={
                X_batch: dataset['X_train'][batch_slice],
                y_batch: dataset['y_train'][batch_slice],
            },
            on_unused_input='ignore',
        )

        iter_valid = None
        if self.use_valid:
            iter_valid = theano.function(
                [batch_index], [loss_eval, accuracy, proba],
                givens={
                    X_batch: dataset['X_valid'][batch_slice],
                    y_batch: dataset['y_valid'][batch_slice],
                },
            )

        return dict(train=iter_train, valid=iter_valid) 
开发者ID:ahara,项目名称:kaggle_otto,代码行数:42,代码来源:nn_adagrad_log.py

示例10: create_iter_functions

# 需要导入模块: from lasagne import objectives [as 别名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 别名]
def create_iter_functions(self, dataset, output_layer, X_tensor_type=T.matrix):
        batch_index = T.iscalar('batch_index')
        X_batch = X_tensor_type('x')
        y_batch = T.ivector('y')

        batch_slice = slice(batch_index * self.batch_size, (batch_index + 1) * self.batch_size)

        objective = Objective(output_layer, loss_function=categorical_crossentropy)

        loss_train = objective.get_loss(X_batch, target=y_batch)
        loss_eval = objective.get_loss(X_batch, target=y_batch, deterministic=True)

        pred = T.argmax(output_layer.get_output(X_batch, deterministic=True), axis=1)
        proba = output_layer.get_output(X_batch, deterministic=True)
        accuracy = T.mean(T.eq(pred, y_batch), dtype=theano.config.floatX)

        all_params = get_all_params(output_layer)
        updates = rmsprop(loss_train, all_params, self.lr, self.rho)

        iter_train = theano.function(
            [batch_index], loss_train,
            updates=updates,
            givens={
                X_batch: dataset['X_train'][batch_slice],
                y_batch: dataset['y_train'][batch_slice],
            },
            on_unused_input='ignore',
        )

        iter_valid = None
        if self.use_valid:
            iter_valid = theano.function(
                [batch_index], [loss_eval, accuracy, proba],
                givens={
                    X_batch: dataset['X_valid'][batch_slice],
                    y_batch: dataset['y_valid'][batch_slice],
                },
            )

        return dict(train=iter_train, valid=iter_valid) 
开发者ID:ahara,项目名称:kaggle_otto,代码行数:42,代码来源:nn_rmsprop_features.py

示例11: create_iter_functions

# 需要导入模块: from lasagne import objectives [as 别名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 别名]
def create_iter_functions(self, dataset, output_layer, X_tensor_type=T.matrix):
        batch_index = T.iscalar('batch_index')
        X_batch = X_tensor_type('x')
        y_batch = T.ivector('y')

        batch_slice = slice(batch_index * self.batch_size, (batch_index + 1) * self.batch_size)

        objective = Objective(output_layer, loss_function=categorical_crossentropy)

        loss_train = objective.get_loss(X_batch, target=y_batch)
        loss_eval = objective.get_loss(X_batch, target=y_batch, deterministic=True)

        pred = T.argmax(output_layer.get_output(X_batch, deterministic=True), axis=1)
        proba = output_layer.get_output(X_batch, deterministic=True)
        accuracy = T.mean(T.eq(pred, y_batch), dtype=theano.config.floatX)

        all_params = get_all_params(output_layer)
        updates = lasagne.updates.nesterov_momentum(loss_train, all_params, self.lr, self.momentum)

        iter_train = theano.function(
            [batch_index], loss_train,
            updates=updates,
            givens={
                X_batch: dataset['X_train'][batch_slice],
                y_batch: dataset['y_train'][batch_slice],
            },
            on_unused_input='ignore',
        )

        iter_valid = None
        if self.use_valid:
            iter_valid = theano.function(
                [batch_index], [loss_eval, accuracy, proba],
                givens={
                    X_batch: dataset['X_valid'][batch_slice],
                    y_batch: dataset['y_valid'][batch_slice],
                },
            )

        return dict(train=iter_train, valid=iter_valid) 
开发者ID:ahara,项目名称:kaggle_otto,代码行数:42,代码来源:bagging_nn_nesterov.py

示例12: categorical_crossentropy_stable

# 需要导入模块: from lasagne import objectives [as 别名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 别名]
def categorical_crossentropy_stable(predictions, targets):
    epsilon = 1e-08
    predictions = T.clip(predictions, epsilon, 1.0 - epsilon)
    return T.nnet.categorical_crossentropy(predictions, targets) 
开发者ID:davideboscaini,项目名称:acnn,代码行数:6,代码来源:models.py

示例13: __init__

# 需要导入模块: from lasagne import objectives [as 别名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 别名]
def __init__(self):

        # Define inputs
        input_var = T.ftensor4('input_var')  # input images (batchx3x64x64)
        labels_classifier_var = T.ivector('labels_classifier_var')  # labels for images
        labels_domain_var = T.ivector('labels_domain_var')  # labels for domain (1 for source, 0 for target)
        learning_rate = T.fscalar('learning_rate')

        # Define classifier networks
        network_classifier = self.network_classifier(input_var)
        network_discriminator = self.network_discriminator(network_classifier['classifier/pool1'])

        # Define outputs
        prediction_classifier = get_output(network_classifier['classifier/output'])  # prob image classification
        prediction_discriminator = get_output(network_discriminator['discriminator/output'])  # prob image domain (should be 1 for source)

        # Define losses (objectives)
        loss_classifier_only = T.mean(categorical_crossentropy(prediction_classifier, labels_classifier_var) * labels_domain_var)
        loss_discriminator = T.mean(categorical_crossentropy(prediction_discriminator, labels_domain_var))
        loss_classifier = loss_classifier_only - loss_discriminator

        # Define performance
        perf_classifier_only = categorical_accuracy(prediction_classifier, labels_classifier_var).mean()
        perf_discriminator = categorical_accuracy(prediction_discriminator, labels_domain_var).mean()

        # Define params
        params_classifier = lasagne.layers.get_all_params(network_classifier['classifier/output'], trainable=True)
        params_discriminator = lasagne.layers.get_all_params(network_discriminator['discriminator/output'], trainable=True)
        params_discriminator = [param for param in params_discriminator if 'discriminator' in param.name]

        # Define updates
        updates_classifier = lasagne.updates.adam(loss_classifier, params_classifier, learning_rate=learning_rate)
        updates_classifier_only = lasagne.updates.adam(loss_classifier_only, params_classifier, learning_rate=learning_rate)
        updates_discriminator = lasagne.updates.adam(loss_discriminator, params_discriminator, learning_rate=learning_rate)

        # Define training functions
        self.train_fn_classifier = theano.function(
            [input_var, labels_classifier_var, labels_domain_var, learning_rate],
            [loss_classifier, loss_classifier_only, prediction_classifier],
            updates=updates_classifier)
        self.train_fn_classifier_only = theano.function(
            [input_var, labels_classifier_var, labels_domain_var, learning_rate],
            [loss_classifier, loss_classifier_only, prediction_classifier],
            updates=updates_classifier_only)
        self.train_fn_discriminator = theano.function(
            [input_var, labels_domain_var, learning_rate],
            [loss_discriminator, prediction_discriminator],
            updates=updates_discriminator)

        # Define validation functions
        self.valid_fn_classifier = theano.function(
            [input_var, labels_classifier_var],
            [perf_classifier_only, prediction_classifier])

        self.valid_fn_discriminator = theano.function(
            [input_var, labels_domain_var],
            [perf_discriminator, prediction_discriminator]) 
开发者ID:davidtellez,项目名称:adda_mnist64,代码行数:59,代码来源:adda_network.py

示例14: compile_update_softmax

# 需要导入模块: from lasagne import objectives [as 别名]
# 或者: from lasagne.objectives import categorical_crossentropy [as 别名]
def compile_update_softmax(nnet, inputs, targets):
    """
    create a softmax loss for network given in argument
    """

    floatX = Cfg.floatX
    C = Cfg.C

    final_layer = nnet.all_layers[-1]
    trainable_params = lasagne.layers.get_all_params(final_layer, trainable=True)

    # Regularization
    if Cfg.weight_decay:
        l2_penalty = (floatX(0.5) / C) * get_l2_penalty(nnet)
    else:
        l2_penalty = T.cast(0, dtype='floatX')

    # Backpropagation
    prediction = lasagne.layers.get_output(final_layer, inputs=inputs, deterministic=False)

    if Cfg.ad_experiment:
        train_loss = T.mean(l_objectives.binary_crossentropy(prediction.flatten(), targets), dtype='floatX')
        train_acc = T.mean(l_objectives.binary_accuracy(prediction.flatten(), targets), dtype='floatX')
    else:
        train_loss = T.mean(l_objectives.categorical_crossentropy(prediction, targets), dtype='floatX')
        train_acc = T.mean(T.eq(T.argmax(prediction, axis=1), targets), dtype='floatX')

    train_obj = T.cast(train_loss + l2_penalty, dtype='floatX')
    updates = get_updates(nnet, train_obj, trainable_params, solver=nnet.solver)
    nnet.backprop = theano.function([inputs, targets], [train_obj, train_acc], updates=updates)

    # Forwardpropagation
    test_prediction = lasagne.layers.get_output(final_layer, inputs=inputs, deterministic=True)

    if Cfg.ad_experiment:
        test_loss = T.mean(l_objectives.binary_crossentropy(test_prediction.flatten(), targets), dtype='floatX')
        test_acc = T.mean(l_objectives.binary_accuracy(test_prediction.flatten(), targets), dtype='floatX')
    else:
        test_loss = T.mean(l_objectives.categorical_crossentropy(test_prediction, targets), dtype='floatX')
        test_acc = T.mean(T.eq(T.argmax(test_prediction, axis=1), targets), dtype='floatX')

    test_obj = T.cast(test_loss + l2_penalty, dtype='floatX')
    nnet.forward = theano.function([inputs, targets], [test_obj, test_acc, test_prediction, l2_penalty, test_loss]) 
开发者ID:lukasruff,项目名称:Deep-SVDD,代码行数:45,代码来源:updates.py


注:本文中的lasagne.objectives.categorical_crossentropy方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。