当前位置: 首页>>代码示例>>Python>>正文


Python nonlinearities.identity方法代码示例

本文整理汇总了Python中lasagne.nonlinearities.identity方法的典型用法代码示例。如果您正苦于以下问题:Python nonlinearities.identity方法的具体用法?Python nonlinearities.identity怎么用?Python nonlinearities.identity使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在lasagne.nonlinearities的用法示例。


在下文中一共展示了nonlinearities.identity方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from lasagne import nonlinearities [as 别名]
# 或者: from lasagne.nonlinearities import identity [as 别名]
def __init__(self, incoming_vertex, incoming_edge, num_filters, filter_size, W=init.GlorotUniform(),
                 b=init.Constant(0.), nonlinearity=nonlinearities.rectify, **kwargs):
        self.vertex_shape = incoming_vertex.output_shape
        self.edge_shape = incoming_edge.output_shape

        self.input_shape = incoming_vertex.output_shape
        incomings = [incoming_vertex, incoming_edge]
        self.vertex_incoming_index = 0
        self.edge_incoming_index = 1
        super(GraphConvLayer, self).__init__(incomings, **kwargs)
        if nonlinearity is None:
            self.nonlinearity = nonlinearities.identity
        else:
            self.nonlinearity = nonlinearity

        self.num_filters = num_filters
        self.filter_size = filter_size

        self.W = self.add_param(W, self.get_W_shape(), name="W")
        if b is None:
            self.b = None
        else:
            self.b = self.add_param(b, (num_filters,), name="b", regularizable=False) 
开发者ID:XuezheMax,项目名称:LasagneNLP,代码行数:25,代码来源:graph.py

示例2: __init__

# 需要导入模块: from lasagne import nonlinearities [as 别名]
# 或者: from lasagne.nonlinearities import identity [as 别名]
def __init__(self, incoming, W_h=init.GlorotUniform(), b_h=init.Constant(0.), W_t=init.GlorotUniform(),
                 b_t=init.Constant(0.), nonlinearity=nonlinearities.rectify, **kwargs):
        super(HighwayDenseLayer, self).__init__(incoming, **kwargs)
        self.nonlinearity = (nonlinearities.identity if nonlinearity is None
                             else nonlinearity)

        num_inputs = int(np.prod(self.input_shape[1:]))

        self.W_h = self.add_param(W_h, (num_inputs, num_inputs), name="W_h")
        if b_h is None:
            self.b_h = None
        else:
            self.b_h = self.add_param(b_h, (num_inputs,), name="b_h", regularizable=False)

        self.W_t = self.add_param(W_t, (num_inputs, num_inputs), name="W_t")
        if b_t is None:
            self.b_t = None
        else:
            self.b_t = self.add_param(b_t, (num_inputs,), name="b_t", regularizable=False) 
开发者ID:XuezheMax,项目名称:LasagneNLP,代码行数:21,代码来源:highway.py

示例3: initialization

# 需要导入模块: from lasagne import nonlinearities [as 别名]
# 或者: from lasagne.nonlinearities import identity [as 别名]
def initialization(name):

    initializations = {'sigmoid':init.HeNormal(gain=1.0),
            'softmax':init.HeNormal(gain=1.0),
            'elu':init.HeNormal(gain=1.0),
            'relu':init.HeNormal(gain=math.sqrt(2)),
            'lrelu':init.HeNormal(gain=math.sqrt(2/(1+0.01**2))),
            'vlrelu':init.HeNormal(gain=math.sqrt(2/(1+0.33**2))),
            'rectify':init.HeNormal(gain=math.sqrt(2)),
            'identity':init.HeNormal(gain=math.sqrt(2))
            }

    return initializations[name]


#################### BASELINE MODEL ##################### 
开发者ID:kahst,项目名称:BirdCLEF-Baseline,代码行数:18,代码来源:lasagne_net.py

示例4: test_workflow

# 需要导入模块: from lasagne import nonlinearities [as 别名]
# 或者: from lasagne.nonlinearities import identity [as 别名]
def test_workflow(self):
        inp = InputLayer(self.x.shape)
        out = DenseLayer(inp, 1, W=NormalSpec(sd=LognormalSpec()), nonlinearity=to.identity)
        out = DenseLayer(out, 1, W=NormalSpec(sd=LognormalSpec()), nonlinearity=to.identity)
        assert out.root is inp
        with out:
            pm.Normal('y', mu=get_output(out),
                      sd=self.sd,
                      observed=self.y) 
开发者ID:ferrine,项目名称:gelato,代码行数:11,代码来源:test_magic.py

示例5: __init__

# 需要导入模块: from lasagne import nonlinearities [as 别名]
# 或者: from lasagne.nonlinearities import identity [as 别名]
def __init__(self, W_in=init.GlorotUniform(), W_hid=init.GlorotUniform(),
                 W_cell=init.GlorotUniform(), b=init.Constant(0.),
                 nonlinearity=nonlinearities.sigmoid):
        self.W_in = W_in
        self.W_hid = W_hid
        # Don't store a cell weight vector when cell is None
        if W_cell is not None:
            self.W_cell = W_cell
        self.b = b
        # For the nonlinearity, if None is supplied, use identity
        if nonlinearity is None:
            self.nonlinearity = nonlinearities.identity
        else:
            self.nonlinearity = nonlinearity 
开发者ID:alexlee-gk,项目名称:visual_dynamics,代码行数:16,代码来源:layers_theano.py

示例6: nonlinearity

# 需要导入模块: from lasagne import nonlinearities [as 别名]
# 或者: from lasagne.nonlinearities import identity [as 别名]
def nonlinearity(name):

    nonlinearities = {'rectify': nl.rectify,
                     'relu': nl.rectify,
                     'lrelu': nl.LeakyRectify(0.01),
                     'vlrelu': nl.LeakyRectify(0.33),
                     'elu': nl.elu,
                     'softmax': nl.softmax,
                     'sigmoid': nl.sigmoid,
                     'identity':nl.identity}

    return nonlinearities[name] 
开发者ID:kahst,项目名称:BirdCLEF-Baseline,代码行数:14,代码来源:lasagne_net.py

示例7: __init__

# 需要导入模块: from lasagne import nonlinearities [as 别名]
# 或者: from lasagne.nonlinearities import identity [as 别名]
def __init__(self, args, incoming, num_units, W=init.GlorotUniform(),
                 b=init.Constant(0.), nonlinearity=nonlinearities.rectify,
                 num_leading_axes=1, **kwargs):
        super(DenseLayerWithReg, self).__init__(incoming, **kwargs)
        self.nonlinearity = (nonlinearities.identity if nonlinearity is None
                             else nonlinearity)

        self.num_units = num_units

        if num_leading_axes >= len(self.input_shape):
            raise ValueError(
                    "Got num_leading_axes=%d for a %d-dimensional input, "
                    "leaving no trailing axes for the dot product." %
                    (num_leading_axes, len(self.input_shape)))
        elif num_leading_axes < -len(self.input_shape):
            raise ValueError(
                    "Got num_leading_axes=%d for a %d-dimensional input, "
                    "requesting more trailing axes than there are input "
                    "dimensions." % (num_leading_axes, len(self.input_shape)))
        self.num_leading_axes = num_leading_axes

        if any(s is None for s in self.input_shape[num_leading_axes:]):
            raise ValueError(
                    "A DenseLayer requires a fixed input shape (except for "
                    "the leading axes). Got %r for num_leading_axes=%d." %
                    (self.input_shape, self.num_leading_axes))
        num_inputs = int(np.prod(self.input_shape[num_leading_axes:]))

        self.W = self.add_param(W, (num_inputs, num_units), name="W")
        if b is None:
            self.b = None
        else:
            self.b = self.add_param(b, (num_units,), name="b",
                                    regularizable=False)

        if args.regL1 is True:
            self.L1 = self.add_param(init.Constant(args.regInit['L1']),
                                     (num_inputs, num_units), name="L1")
        if args.regL2 is True:
            self.L2 = self.add_param(init.Constant(args.regInit['L2']),
                                     (num_inputs, num_units), name="L2") 
开发者ID:bigaidream-projects,项目名称:drmad,代码行数:43,代码来源:layers.py

示例8: __init__

# 需要导入模块: from lasagne import nonlinearities [as 别名]
# 或者: from lasagne.nonlinearities import identity [as 别名]
def __init__(self, incoming, filter_size,
                 init_std=5., W_logstd=None,
                 stride=1, pad=0,
                 nonlinearity=None,
                 convolution=conv1d_mc0, **kwargs):
        super(GaussianScan1DLayer, self).__init__(incoming, **kwargs)
        # convolution = conv1d_gpucorrmm_mc0
        # convolution = conv.conv1d_mc0
        # convolution = T.nnet.conv2d
        if nonlinearity is None:
            self.nonlinearity = nonlinearities.identity
        else:
            self.nonlinearity = nonlinearity

        self.filter_size = as_tuple(filter_size, 1)
        self.stride = as_tuple(stride, 1)
        self.convolution = convolution

        # if self.filter_size[0] % 2 == 0:
        #     raise NotImplementedError(
        #         'GaussianConv1dLayer requires odd filter size.')

        if pad == 'valid':
            self.pad = (0,)
        elif pad in ('full', 'same', 'strictsame'):
            self.pad = pad
        else:
            self.pad = as_tuple(pad, 1, int)

        if W_logstd is None:
            init_std = np.asarray(init_std, dtype=floatX)
            W_logstd = init.Constant(np.log(init_std))
        # print(W_std)
        # W_std = init.Constant(init_std),
        self.num_input_channels = self.input_shape[1]
        # self.num_filters = self.num_input_channels
        self.W_logstd = self.add_param(W_logstd,
                                       (self.num_input_channels,),
                                       name="W_logstd",
                                       regularizable=False)
        self.W = self.make_gaussian_filter() 
开发者ID:ciaua,项目名称:clip2frame,代码行数:43,代码来源:layers.py

示例9: build_autoencoder_network

# 需要导入模块: from lasagne import nonlinearities [as 别名]
# 或者: from lasagne.nonlinearities import identity [as 别名]
def build_autoencoder_network():
    input_var = T.tensor4('input_var');

    layer = layers.InputLayer(shape=(None, 3, PS, PS), input_var=input_var);
    layer = batch_norm(layers.Conv2DLayer(layer,  80, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer,  80, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer,  80, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer,  80, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 100, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 100, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 100, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 100, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));

    mask_map = layer;
    layer = batch_norm(layers.Conv2DLayer(layer,   10, filter_size=(1,1),   stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 1000, filter_size=(76,76), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer, 10, filter_size=(76,76), stride=1, nonlinearity=leaky_rectify));

    layer = batch_norm(layers.Deconv2DLayer(layer, 100, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer, 100, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer, 100, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer, 100, filter_size=(3,3), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer,  80, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer,  80, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer,  80, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer,  80, filter_size=(5,5), stride=1, nonlinearity=leaky_rectify));
    layer =            layers.Deconv2DLayer(layer,   3, filter_size=(1,1), stride=1, nonlinearity=identity);

    network = ReshapeLayer(layer, ([0], -1));
    mask_var = lasagne.layers.get_output(mask_map);
    output_var = lasagne.layers.get_output(network);

    return network, input_var, mask_var, output_var; 
开发者ID:SBU-BMI,项目名称:u24_lymphocyte,代码行数:35,代码来源:deep_conv_ae_spsparse_alt29.py

示例10: batch_nmsp

# 需要导入模块: from lasagne import nonlinearities [as 别名]
# 或者: from lasagne.nonlinearities import identity [as 别名]
def batch_nmsp(layer, beta=init.Constant(-3.0), **kwargs):
    nonlinearity = getattr(layer, 'nonlinearity', None)
    if nonlinearity is not None:
        layer.nonlinearity = nonlinearities.identity
    if hasattr(layer, 'b') and layer.b is not None:
        del layer.params[layer.b]
        layer.b = None
    layer = BatchNormSparseLayer(layer, beta=beta, **kwargs)
    if nonlinearity is not None:
        from lasagne.layers import NonlinearityLayer
        layer = NonlinearityLayer(layer, nonlinearity)
    return layer 
开发者ID:SBU-BMI,项目名称:u24_lymphocyte,代码行数:14,代码来源:batch_norms.py

示例11: __init__

# 需要导入模块: from lasagne import nonlinearities [as 别名]
# 或者: from lasagne.nonlinearities import identity [as 别名]
def __init__(self, incoming, num_filters, num_rot,
                 filter_size, stride=(1, 1),
                 border_mode="valid", untie_biases=False,
                 W=init.GlorotUniform(), b=init.Constant(0.),
                 nonlinearity=nonlinearities.rectify,
                 convolution=T.nnet.conv2d, **kwargs):
        super(RotConv, self).__init__(incoming, **kwargs)
        if nonlinearity is None:
            self.nonlinearity = nonlinearities.identity
        else:
            self.nonlinearity = nonlinearity

        self.num_filters = num_filters
        self.num_rot = num_rot;
        self.filter_size = as_tuple(filter_size, 2)
        self.stride = as_tuple(stride, 2)
        self.border_mode = border_mode
        self.untie_biases = untie_biases
        self.convolution = convolution

        if self.border_mode not in ['valid', 'full', 'same']:
            raise RuntimeError("Invalid border mode: '%s'" % self.border_mode)

        self.W = self.add_param(W, self.get_W_shape(), name="W")
        if b is None:
            self.b = None
        else:
            if self.untie_biases:
                biases_shape = (num_filters, self.output_shape[2], self.
                                output_shape[3])
            else:
                biases_shape = (num_filters,)
            self.b = self.add_param(b, biases_shape, name="b",
                                    regularizable=False) 
开发者ID:SBU-BMI,项目名称:u24_lymphocyte,代码行数:36,代码来源:rotconv.py

示例12: __init__

# 需要导入模块: from lasagne import nonlinearities [as 别名]
# 或者: from lasagne.nonlinearities import identity [as 别名]
def __init__(self, incoming, nonlinearity=nonlinearities.rectify,
                 **kwargs):
        super(NonlinearityLayer, self).__init__(incoming, **kwargs)
        self.nonlinearity = (nonlinearities.identity if nonlinearity is None
                             else nonlinearity) 
开发者ID:317070,项目名称:kaggle-heart,代码行数:7,代码来源:nn_heart.py

示例13: build_resnet_model

# 需要导入模块: from lasagne import nonlinearities [as 别名]
# 或者: from lasagne.nonlinearities import identity [as 别名]
def build_resnet_model():

    log.i('BUILDING RESNET MODEL...')

    # Random Seed
    lasagne_random.set_rng(cfg.getRandomState())

    # Input layer for images
    net = l.InputLayer((None, cfg.IM_DIM, cfg.IM_SIZE[1], cfg.IM_SIZE[0]))

    # First Convolution
    net = l.Conv2DLayer(net,
                        num_filters=cfg.FILTERS[0],
                        filter_size=cfg.KERNEL_SIZES[0],
                        pad='same',
                        W=initialization(cfg.NONLINEARITY),
                        nonlinearity=None)
    
    log.i(("\tFIRST CONV OUT SHAPE:", l.get_output_shape(net), "LAYER:", len(l.get_all_layers(net)) - 1))

    # Residual Stacks
    for i in range(0, len(cfg.FILTERS)):
        net = resblock(net, filters=cfg.FILTERS[i] * cfg.RESNET_K, kernel_size=cfg.KERNEL_SIZES[i], stride=2, num_groups=cfg.NUM_OF_GROUPS[i])
        for _ in range(1, cfg.RESNET_N):
            net = resblock(net, filters=cfg.FILTERS[i] * cfg.RESNET_K, kernel_size=cfg.KERNEL_SIZES[i], num_groups=cfg.NUM_OF_GROUPS[i], preactivated=False)
        log.i(("\tRES STACK", i + 1, "OUT SHAPE:", l.get_output_shape(net), "LAYER:", len(l.get_all_layers(net)) - 1))
        
    # Post Activation
    net = batch_norm(net)
    net = l.NonlinearityLayer(net, nonlinearity=nonlinearity(cfg.NONLINEARITY))
        
    # Pooling
    net = l.GlobalPoolLayer(net)
    log.i(("\tFINAL POOLING SHAPE:", l.get_output_shape(net), "LAYER:", len(l.get_all_layers(net)) - 1))

    # Classification Layer    
    net = l.DenseLayer(net, len(cfg.CLASSES), nonlinearity=nonlinearity('identity'), W=initialization('identity'))
    net = l.NonlinearityLayer(net, nonlinearity=nonlinearity('softmax'))

    log.i(("\tFINAL NET OUT SHAPE:", l.get_output_shape(net), "LAYER:", len(l.get_all_layers(net))))
    log.i("...DONE!")

    # Model stats
    log.i(("MODEL HAS", (sum(hasattr(layer, 'W') for layer in l.get_all_layers(net))), "WEIGHTED LAYERS"))
    log.i(("MODEL HAS", l.count_params(net), "PARAMS"))

    return net

################## PASPBERRY PI NET ##################### 
开发者ID:kahst,项目名称:BirdCLEF-Baseline,代码行数:51,代码来源:lasagne_net.py

示例14: build_autoencoder_network

# 需要导入模块: from lasagne import nonlinearities [as 别名]
# 或者: from lasagne.nonlinearities import identity [as 别名]
def build_autoencoder_network():
    input_var = T.tensor4('input_var');

    layer = layers.InputLayer(shape=(None, 3, PS, PS), input_var=input_var);
    layer = batch_norm(layers.Conv2DLayer(layer,  80, filter_size=(5,5), stride=1, pad='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer,  80, filter_size=(5,5), stride=1, pad='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer,  80, filter_size=(5,5), stride=1, pad='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer,  80, filter_size=(5,5), stride=1, pad='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 100, filter_size=(3,3), stride=1, pad='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 100, filter_size=(3,3), stride=1, pad='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 100, filter_size=(3,3), stride=1, pad='same', nonlinearity=leaky_rectify));
    prely = batch_norm(layers.Conv2DLayer(layer, 100, filter_size=(3,3), stride=1, pad='same', nonlinearity=leaky_rectify));

    featm    = batch_norm(layers.Conv2DLayer(prely, 180, filter_size=(1,1), nonlinearity=leaky_rectify));
    feat_map = batch_norm(layers.Conv2DLayer(featm, 120, filter_size=(1,1), nonlinearity=rectify, name="feat_map"));
    maskm    = batch_norm(layers.Conv2DLayer(prely, 120, filter_size=(1,1), nonlinearity=leaky_rectify));
    mask_rep = batch_norm(layers.Conv2DLayer(maskm,   1, filter_size=(1,1), nonlinearity=None),   beta=None, gamma=None);
    mask_map = SoftThresPerc(mask_rep, perc=99.9, alpha=0.5, beta=init.Constant(0.5), tight=50.0, name="mask_map");
    layer    = ChInnerProdMerge(feat_map, mask_map, name="encoder");

    layer = batch_norm(layers.Deconv2DLayer(layer, 100, filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer, 100, filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer, 100, filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer, 100, filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer,  80, filter_size=(5,5), stride=1, crop='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer,  80, filter_size=(5,5), stride=1, crop='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer,  80, filter_size=(5,5), stride=1, crop='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer,  80, filter_size=(5,5), stride=1, crop='same', nonlinearity=leaky_rectify));
    layer =            layers.Deconv2DLayer(layer,   3, filter_size=(1,1), stride=1, crop='same', nonlinearity=identity);

    glblf = batch_norm(layers.Conv2DLayer(prely,  100, filter_size=(1,1), nonlinearity=leaky_rectify));
    glblf = layers.Pool2DLayer(glblf, pool_size=(5,5), stride=5, mode='average_inc_pad');
    glblf = batch_norm(layers.Conv2DLayer(glblf,   64, filter_size=(3,3), stride=1, pad='same', nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Conv2DLayer(glblf,    3, filter_size=(1,1), nonlinearity=rectify), name="global_feature");

    glblf = batch_norm(layers.Deconv2DLayer(glblf, 64, filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Deconv2DLayer(glblf, 64, filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Deconv2DLayer(glblf, 64, filter_size=(9,9), stride=5, crop=(2,2),  nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Deconv2DLayer(glblf, 48, filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Deconv2DLayer(glblf, 48, filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Deconv2DLayer(glblf, 48, filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Deconv2DLayer(glblf, 32, filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Deconv2DLayer(glblf, 32, filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Deconv2DLayer(glblf, 32, filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    glblf =            layers.Deconv2DLayer(glblf,  3, filter_size=(1,1), stride=1, crop='same', nonlinearity=identity);

    layer = layers.ElemwiseSumLayer([layer, glblf]);

    network = ReshapeLayer(layer, ([0], -1));
    mask_var = lasagne.layers.get_output(mask_map);
    output_var = lasagne.layers.get_output(network);

    return network, input_var, mask_var, output_var; 
开发者ID:SBU-BMI,项目名称:u24_lymphocyte,代码行数:55,代码来源:deep_conv_ae_spsparse_alt32.py

示例15: build_autoencoder_network

# 需要导入模块: from lasagne import nonlinearities [as 别名]
# 或者: from lasagne.nonlinearities import identity [as 别名]
def build_autoencoder_network():
    input_var = T.tensor4('input_var');

    layer = layers.InputLayer(shape=(None, 3, PS, PS), input_var=input_var);
    layer = batch_norm(layers.Conv2DLayer(layer, 100,  filter_size=(5,5), stride=1, pad='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 120,  filter_size=(5,5), stride=1, pad='same', nonlinearity=leaky_rectify));
    layer = layers.Pool2DLayer(layer, pool_size=(2,2), stride=2, mode='average_inc_pad');
    layer = batch_norm(layers.Conv2DLayer(layer, 240,  filter_size=(3,3), stride=1, pad='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Conv2DLayer(layer, 320,  filter_size=(3,3), stride=1, pad='same', nonlinearity=leaky_rectify));
    layer = layers.Pool2DLayer(layer, pool_size=(2,2), stride=2, mode='average_inc_pad');
    layer = batch_norm(layers.Conv2DLayer(layer, 640,  filter_size=(3,3), stride=1, pad='same', nonlinearity=leaky_rectify));
    prely = batch_norm(layers.Conv2DLayer(layer, 1024, filter_size=(3,3), stride=1, pad='same', nonlinearity=leaky_rectify));

    featm    = batch_norm(layers.Conv2DLayer(prely, 640, filter_size=(1,1), nonlinearity=leaky_rectify));
    feat_map = batch_norm(layers.Conv2DLayer(featm, 100, filter_size=(1,1), nonlinearity=rectify, name="feat_map"));
    maskm    = batch_norm(layers.Conv2DLayer(prely, 100, filter_size=(1,1), nonlinearity=leaky_rectify));
    mask_rep = batch_norm(layers.Conv2DLayer(maskm, 1,   filter_size=(1,1), nonlinearity=None),   beta=None, gamma=None);
    mask_map = SoftThresPerc(mask_rep, perc=98.4, alpha=0.1, beta=init.Constant(0.5), tight=100.0, name="mask_map");
    layer    = ChInnerProdMerge(feat_map, mask_map, name="encoder");

    layer = batch_norm(layers.Deconv2DLayer(layer, 1024, filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer, 640,  filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer, 640,  filter_size=(4,4), stride=2, crop=(1,1),  nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer, 320,  filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer, 320,  filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer, 240,  filter_size=(4,4), stride=2, crop=(1,1),  nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer, 120,  filter_size=(5,5), stride=1, crop='same', nonlinearity=leaky_rectify));
    layer = batch_norm(layers.Deconv2DLayer(layer, 100,  filter_size=(5,5), stride=1, crop='same', nonlinearity=leaky_rectify));
    layer =            layers.Deconv2DLayer(layer, 3,    filter_size=(1,1), stride=1, crop='same', nonlinearity=identity);

    glblf = batch_norm(layers.Conv2DLayer(prely, 128,  filter_size=(1,1), nonlinearity=leaky_rectify));
    glblf = layers.Pool2DLayer(glblf, pool_size=(5,5), stride=5, mode='average_inc_pad');
    glblf = batch_norm(layers.Conv2DLayer(glblf, 64,   filter_size=(3,3), stride=1, pad='same', nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Conv2DLayer(glblf, 5,    filter_size=(1,1), nonlinearity=rectify), name="global_feature");

    glblf = batch_norm(layers.Deconv2DLayer(glblf, 256, filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Deconv2DLayer(glblf, 128, filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Deconv2DLayer(glblf, 128, filter_size=(9,9), stride=5, crop=(2,2),  nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Deconv2DLayer(glblf, 128, filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Deconv2DLayer(glblf, 128, filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Deconv2DLayer(glblf, 64,  filter_size=(4,4), stride=2, crop=(1,1),  nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Deconv2DLayer(glblf, 64,  filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Deconv2DLayer(glblf, 64,  filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Deconv2DLayer(glblf, 32,  filter_size=(4,4), stride=2, crop=(1,1),  nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Deconv2DLayer(glblf, 32,  filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    glblf = batch_norm(layers.Deconv2DLayer(glblf, 32,  filter_size=(3,3), stride=1, crop='same', nonlinearity=leaky_rectify));
    glblf =            layers.Deconv2DLayer(glblf, 3,   filter_size=(1,1), stride=1, crop='same', nonlinearity=identity);

    layer = layers.ElemwiseSumLayer([layer, glblf]);

    network = ReshapeLayer(layer, ([0], -1));
    mask_var = lasagne.layers.get_output(mask_map);
    output_var = lasagne.layers.get_output(network);

    return network, input_var, mask_var, output_var; 
开发者ID:SBU-BMI,项目名称:u24_lymphocyte,代码行数:57,代码来源:deep_conv_ae_spsparse_alt21.py


注:本文中的lasagne.nonlinearities.identity方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。