当前位置: 首页>>代码示例>>Python>>正文


Python layers.get_all_layers方法代码示例

本文整理汇总了Python中lasagne.layers.get_all_layers方法的典型用法代码示例。如果您正苦于以下问题:Python layers.get_all_layers方法的具体用法?Python layers.get_all_layers怎么用?Python layers.get_all_layers使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在lasagne.layers的用法示例。


在下文中一共展示了layers.get_all_layers方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: example2

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import get_all_layers [as 别名]
def example2():
    """ Two branches"""
    # Input
    l_in = lasagne.layers.InputLayer((100, 1, 20, 20))
    # Branch one
    l_conv1 = lasagne.layers.Conv2DLayer(l_in, num_filters=32, filter_size=(5, 5))
    l_pool1 = lasagne.layers.MaxPool2DLayer(l_conv1, pool_size=(2, 2))
    l_dense1 = lasagne.layers.DenseLayer(l_pool1, num_units=20)
    # Branch two
    l_conv2 = lasagne.layers.Conv2DLayer(l_in, num_filters=32, filter_size=(5, 5))
    l_pool2 = lasagne.layers.MaxPool2DLayer(l_conv2, pool_size=(2, 2))
    l_dense2 = lasagne.layers.DenseLayer(l_pool2, num_units=20)
    # Merge
    l_concat = lasagne.layers.ConcatLayer((l_dense1, l_dense2))
    # Output
    l_out = lasagne.layers.DenseLayer(l_concat, num_units=10)
    layers = get_all_layers(l_out)
    print(get_network_str(layers, get_network=False, incomings=True, outgoings=True))
    return None 
开发者ID:Lasagne,项目名称:Recipes,代码行数:21,代码来源:network_repr.py

示例2: loadModel

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import get_all_layers [as 别名]
def loadModel(filename):
    print "IMPORTING MODEL PARAMS...",
    net_filename = MODEL_PATH + filename

    with open(net_filename, 'rb') as f:
        data = pickle.load(f)

    #for training, we only want to load the model params
    net = data['net']
    params = l.get_all_param_values(net)
    if LOAD_OUTPUT_LAYER:
        l.set_all_param_values(NET, params)
    else:
        l.set_all_param_values(l.get_all_layers(NET)[:-1], params[:-2])    

    print "DONE!" 
开发者ID:kahst,项目名称:AcousticEventDetection,代码行数:18,代码来源:AED_train.py

示例3: loadPretrained

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import get_all_layers [as 别名]
def loadPretrained(net):

    if cfg.MODEL_NAME:

        # Load saved model
        n, c = io.loadModel(cfg.MODEL_NAME)

        # Set params
        params = l.get_all_param_values(n)
        if cfg.LOAD_OUTPUT_LAYER:
            l.set_all_param_values(net, params)
        else:
            l.set_all_param_values(l.get_all_layers(net)[:-1], params[:-2])

    return net

#################### LOSS FUNCTION ###################### 
开发者ID:kahst,项目名称:BirdCLEF-Baseline,代码行数:19,代码来源:lasagne_net.py

示例4: train_function

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import get_all_layers [as 别名]
def train_function(net):

    # We use dynamic learning rates which change after some epochs
    lr_dynamic = T.scalar(name='learning_rate')

    # Theano variable for the class targets
    targets = T.matrix('targets', dtype=theano.config.floatX)

    # Get the network output
    prediction = l.get_output(net)
    
    # The theano train functions takes images and class targets as input
    log.i("COMPILING TRAIN FUNCTION...", new_line=False)
    start = time.time()
    loss = loss_function(net, prediction, targets)
    updates = net_updates(net, loss, lr_dynamic)
    train_net = theano.function([l.get_all_layers(net)[0].input_var, targets, lr_dynamic], loss, updates=updates, allow_input_downcast=True)
    log.i(("DONE! (", int(time.time() - start), "s )"))

    return train_net

################# PREDICTION FUNCTION #################### 
开发者ID:kahst,项目名称:BirdCLEF-Baseline,代码行数:24,代码来源:lasagne_net.py

示例5: test_function

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import get_all_layers [as 别名]
def test_function(net, hasTargets=True, layer_index=-1):    

    # We need the prediction function to calculate the validation accuracy
    # this way we can test the net during/after training
    # We need a version with targets and one without
    prediction = l.get_output(l.get_all_layers(net)[layer_index], deterministic=True)

    log.i("COMPILING TEST FUNCTION...", new_line=False)
    start = time.time()
    if hasTargets:
        # Theano variable for the class targets
        targets = T.matrix('targets', dtype=theano.config.floatX)
        
        loss = loss_function(net, prediction, targets)
        accuracy = accuracy_function(net, prediction, targets)
        
        test_net = theano.function([l.get_all_layers(net)[0].input_var, targets], [prediction, loss, accuracy], allow_input_downcast=True)

    else:
        test_net = theano.function([l.get_all_layers(net)[0].input_var], prediction, allow_input_downcast=True)
        
    log.i(("DONE! (", int(time.time() - start), "s )"))

    return test_net 
开发者ID:kahst,项目名称:BirdCLEF-Baseline,代码行数:26,代码来源:lasagne_net.py

示例6: get_objective

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import get_all_layers [as 别名]
def get_objective(l1=0.0, l2=0.0005):
    class RegularizedObjective(Objective):

        def get_loss(self, input=None, target=None, aggregation=None,
                     deterministic=False, **kwargs):

            l1_layer = get_all_layers(self.input_layer)[1]

            loss = super(RegularizedObjective, self).get_loss(
                input=input, target=target, aggregation=aggregation,
                deterministic=deterministic, **kwargs)
            if not deterministic:
                return loss \
                    + l1 * lasagne.regularization.regularize_layer_params(
                        l1_layer, lasagne.regularization.l1) \
                    + l2 * lasagne.regularization.regularize_network_params(
                        self.input_layer, lasagne.regularization.l2)
            else:
                return loss
    return RegularizedObjective 
开发者ID:sveitser,项目名称:kaggle_diabetic,代码行数:22,代码来源:nn.py

示例7: _build

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import get_all_layers [as 别名]
def _build(self, forget_bias=5.0, grad_clip=10.0):
        """Build architecture
        """
        network = InputLayer(shape=(None, self.seq_length, self.input_size),
                             name='input')
        self.input_var = network.input_var

        # Hidden layers
        tanh = lasagne.nonlinearities.tanh
        gate, constant = lasagne.layers.Gate, lasagne.init.Constant
        for _ in range(self.depth):
            network = LSTMLayer(network, self.width, nonlinearity=tanh,
                                grad_clipping=grad_clip,
                                forgetgate=gate(b=constant(forget_bias)))

        # Retain last-output state
        network = SliceLayer(network, -1, 1)

        # Output layer
        sigmoid = lasagne.nonlinearities.sigmoid
        loc_layer = DenseLayer(network, self.num_outputs * 2)
        conf_layer = DenseLayer(network, self.num_outputs,
                                nonlinearity=sigmoid)

        # Grab all layers into DAPs instance
        self.network = get_all_layers([loc_layer, conf_layer])

        # Get theano expression for outputs of DAPs model
        self.loc_var, self.conf_var = get_output([loc_layer, conf_layer],
                                                 deterministic=True) 
开发者ID:escorciav,项目名称:daps,代码行数:32,代码来源:sequence_encoder.py

示例8: getPredictionFuntion

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import get_all_layers [as 别名]
def getPredictionFuntion(net):
    net_output = l.get_output(net, deterministic=True)

    print "COMPILING THEANO TEST FUNCTION...",
    start = time.time()
    test_net = theano.function([l.get_all_layers(NET)[0].input_var], net_output, allow_input_downcast=True)
    print "DONE! (", int(time.time() - start), "s )"

    return test_net

################# PREDICTION POOLING #################### 
开发者ID:kahst,项目名称:AcousticEventDetection,代码行数:13,代码来源:AED_eval.py

示例9: classificationBranch

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import get_all_layers [as 别名]
def classificationBranch(net, kernel_size):

    # Post Convolution
    branch = l.batch_norm(l.Conv2DLayer(net,
                        num_filters=int(FILTERS[-1] * RESNET_K),
                        filter_size=kernel_size,
                        nonlinearity=nl.rectify))

    #log.p(("\t\tPOST  CONV SHAPE:", l.get_output_shape(branch), "LAYER:", len(l.get_all_layers(branch)) - 1))

    # Dropout Layer
    branch = l.DropoutLayer(branch)
    
    # Dense Convolution
    branch = l.batch_norm(l.Conv2DLayer(branch,
                        num_filters=int(FILTERS[-1] * RESNET_K * 2),
                        filter_size=1,
                        nonlinearity=nl.rectify))

    #log.p(("\t\tDENSE CONV SHAPE:", l.get_output_shape(branch), "LAYER:", len(l.get_all_layers(branch)) - 1))
    
    # Dropout Layer
    branch = l.DropoutLayer(branch)
    
    # Class Convolution
    branch = l.Conv2DLayer(branch,
                        num_filters=len(cfg.CLASSES),
                        filter_size=1,
                        nonlinearity=None)
    return branch 
开发者ID:kahst,项目名称:BirdNET,代码行数:32,代码来源:model.py

示例10: test_function

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import get_all_layers [as 别名]
def test_function(net, layer_index=-1):

    log.p('COMPILING THEANO TEST FUNCTION FUNCTION...', new_line=False)    

    prediction = l.get_output(l.get_all_layers(net)[layer_index], deterministic=True)    
    test_function = theano.function([l.get_all_layers(net)[0].input_var], prediction, allow_input_downcast=True)        

    log.p('DONE!')

    return test_function 
开发者ID:kahst,项目名称:BirdNET,代码行数:12,代码来源:model.py

示例11: get_equivalent_input_padding

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import get_all_layers [as 别名]
def get_equivalent_input_padding(layer, layers_args=[]):
    """Compute the equivalent padding in the input layer

    A function to compute the equivalent padding of a sequence of
    convolutional and pooling layers. It memorizes the padding
    of all the Layers up to the first InputLayer.
    It then computes what would be the equivalent padding in the Layer
    immediately before the chain of Layers that is being taken into account.
    """
    # Initialize the DynamicPadding layers
    lasagne.layers.get_output(layer)
    # Loop through conv and pool to collect data
    all_layers = get_all_layers(layer)
    # while(not isinstance(layer, (InputLayer))):
    for layer in all_layers:
        # Note: stride is numerical, but pad *could* be symbolic
        try:
            pad, stride = (layer.pad, layer.stride)
            if isinstance(pad, int):
                pad = pad, pad
            if isinstance(stride, int):
                stride = stride, stride
            layers_args.append((pad, stride))
        except(AttributeError):
            pass

    # Loop backward to compute the equivalent padding in the input
    # layer
    tot_pad = T.zeros(2)
    pad_factor = T.ones(2)
    while(layers_args):
        pad, stride = layers_args.pop()
        tot_pad += pad * pad_factor
        pad_factor *= stride

    return tot_pad 
开发者ID:fvisin,项目名称:reseg,代码行数:38,代码来源:padded.py

示例12: loadParams

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import get_all_layers [as 别名]
def loadParams(epoch, filename=None):
    print "IMPORTING MODEL PARAMS...",
    net_filename = MODEL_PATH + filename
    with open(net_filename, 'rb') as f:
        params = pickle.load(f)
    if LOAD_OUTPUT_LAYER:
        l.set_all_param_values(NET, params)
    else:
        l.set_all_param_values(l.get_all_layers(NET)[:-1], params[:-2])
    print "DONE!"

################  PREDICTION SAVE/LOAD  ################## 
开发者ID:kahst,项目名称:BirdCLEF2017,代码行数:14,代码来源:birdCLEF_evaluate.py

示例13: getPredictionFuntion

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import get_all_layers [as 别名]
def getPredictionFuntion(net):
    net_output = l.get_output(net, deterministic=True)

    print "COMPILING THEANO TEST FUNCTION...",
    start = time.time()
    test_net = theano.function([l.get_all_layers(net)[0].input_var], net_output, allow_input_downcast=True)
    print "DONE! (", int(time.time() - start), "s )"

    return test_net

################# PREDICTION POOLING #################### 
开发者ID:kahst,项目名称:BirdCLEF2017,代码行数:13,代码来源:birdCLEF_evaluate.py

示例14: getPredictionFuntion

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import get_all_layers [as 别名]
def getPredictionFuntion(net):
    net_output = l.get_output(net, deterministic=True)

    print "COMPILING THEANO TEST FUNCTION...",
    start = time.time()
    test_net = theano.function([l.get_all_layers(NET)[0].input_var], net_output, allow_input_downcast=True)
    print "DONE! (", int(time.time() - start), "s )"

    return test_net 
开发者ID:kahst,项目名称:BirdCLEF2017,代码行数:11,代码来源:birdCLEF_test.py

示例15: loadParams

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import get_all_layers [as 别名]
def loadParams(epoch, filename=None):
    print "IMPORTING MODEL PARAMS...",
    if filename == None:
        net_filename = MODEL_PATH + "birdCLEF_" + RUN_NAME + "_model_params_epoch_" + str(epoch) + ".pkl"
    else:
        net_filename = MODEL_PATH + filename
    with open(net_filename, 'rb') as f:
        params = pickle.load(f)
    if LOAD_OUTPUT_LAYER:
        l.set_all_param_values(NET, params)
    else:
        l.set_all_param_values(l.get_all_layers(NET)[:-1], params[:-2])
    print "DONE!" 
开发者ID:kahst,项目名称:BirdCLEF2017,代码行数:15,代码来源:birdCLEF_train.py


注:本文中的lasagne.layers.get_all_layers方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。