当前位置: 首页>>代码示例>>Python>>正文


Python layers.InputLayer方法代码示例

本文整理汇总了Python中lasagne.layers.InputLayer方法的典型用法代码示例。如果您正苦于以下问题:Python layers.InputLayer方法的具体用法?Python layers.InputLayer怎么用?Python layers.InputLayer使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在lasagne.layers的用法示例。


在下文中一共展示了layers.InputLayer方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build_discriminator_toy

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import InputLayer [as 别名]
def build_discriminator_toy(image=None, nd=512, GP_norm=None):
    Input = InputLayer(shape=(None, 2), input_var=image)
    print ("Dis input:", Input.output_shape)
    dis0 = DenseLayer(Input, nd, W=Normal(0.02), nonlinearity=relu)
    print ("Dis fc0:", dis0.output_shape)
    if GP_norm is True:
        dis1 = DenseLayer(dis0, nd, W=Normal(0.02), nonlinearity=relu)
    else:
        dis1 = batch_norm(DenseLayer(dis0, nd, W=Normal(0.02), nonlinearity=relu))
    print ("Dis fc1:", dis1.output_shape)
    if GP_norm is True:
        dis2 = batch_norm(DenseLayer(dis1, nd, W=Normal(0.02), nonlinearity=relu))
    else:
        dis2 = DenseLayer(dis1, nd, W=Normal(0.02), nonlinearity=relu)
    print ("Dis fc2:", dis2.output_shape)
    disout = DenseLayer(dis2, 1, W=Normal(0.02), nonlinearity=sigmoid)
    print ("Dis output:", disout.output_shape)
    return disout 
开发者ID:WANG-Chaoyue,项目名称:EvolutionaryGAN,代码行数:20,代码来源:models_uncond.py

示例2: build_generator_32

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import InputLayer [as 别名]
def build_generator_32(noise=None, ngf=128):
    # noise input 
    InputNoise = InputLayer(shape=(None, 100), input_var=noise)
    #FC Layer 
    gnet0 = DenseLayer(InputNoise, ngf*4*4*4, W=Normal(0.02), nonlinearity=relu)
    print ("Gen fc1:", gnet0.output_shape)
    #Reshape Layer
    gnet1 = ReshapeLayer(gnet0,([0],ngf*4,4,4))
    print ("Gen rs1:", gnet1.output_shape)
    # DeConv Layer
    gnet2 = Deconv2DLayer(gnet1, ngf*2, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
    print ("Gen deconv1:", gnet2.output_shape)
    # DeConv Layer
    gnet3 = Deconv2DLayer(gnet2, ngf, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
    print ("Gen deconv2:", gnet3.output_shape)
    # DeConv Layer
    gnet4 = Deconv2DLayer(gnet3, 3, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=tanh)
    print ("Gen output:", gnet4.output_shape)
    return gnet4 
开发者ID:WANG-Chaoyue,项目名称:EvolutionaryGAN,代码行数:21,代码来源:models_uncond.py

示例3: build_discriminator_32

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import InputLayer [as 别名]
def build_discriminator_32(image=None,ndf=128):
    lrelu = LeakyRectify(0.2)
    # input: images
    InputImg = InputLayer(shape=(None, 3, 32, 32), input_var=image)
    print ("Dis Img_input:", InputImg.output_shape)
    # Conv Layer
    dis1 = Conv2DLayer(InputImg, ndf, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu)
    print ("Dis conv1:", dis1.output_shape)
    # Conv Layer
    dis2 = batch_norm(Conv2DLayer(dis1, ndf*2, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu))
    print ("Dis conv2:", dis2.output_shape)
    # Conv Layer
    dis3 = batch_norm(Conv2DLayer(dis2, ndf*4, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu))
    print ("Dis conv3:", dis3.output_shape)
    # Conv Layer
    dis4 = DenseLayer(dis3, 1, W=Normal(0.02), nonlinearity=sigmoid)
    print ("Dis output:", dis4.output_shape)
    return dis4 
开发者ID:WANG-Chaoyue,项目名称:EvolutionaryGAN,代码行数:20,代码来源:models_uncond.py

示例4: build_generator_64

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import InputLayer [as 别名]
def build_generator_64(noise=None, ngf=128):
    # noise input 
    InputNoise = InputLayer(shape=(None, 100), input_var=noise)
    #FC Layer 
    gnet0 = DenseLayer(InputNoise, ngf*8*4*4, W=Normal(0.02), nonlinearity=relu)
    print ("Gen fc1:", gnet0.output_shape)
    #Reshape Layer
    gnet1 = ReshapeLayer(gnet0,([0],ngf*8,4,4))
    print ("Gen rs1:", gnet1.output_shape)
    # DeConv Layer
    gnet2 = Deconv2DLayer(gnet1, ngf*8, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
    print ("Gen deconv2:", gnet2.output_shape)
    # DeConv Layer
    gnet3 = Deconv2DLayer(gnet2, ngf*4, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
    print ("Gen deconv3:", gnet3.output_shape)
    # DeConv Layer
    gnet4 = Deconv2DLayer(gnet3, ngf*4, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
    print ("Gen deconv4:", gnet4.output_shape)
    # DeConv Layer
    gnet5 = Deconv2DLayer(gnet4, ngf*2, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
    print ("Gen deconv5:", gnet5.output_shape)
    # DeConv Layer
    gnet6 = Deconv2DLayer(gnet5, 3, (3,3), (1,1), crop='same', W=Normal(0.02),nonlinearity=tanh)
    print ("Gen output:", gnet6.output_shape)
    return gnet6 
开发者ID:WANG-Chaoyue,项目名称:EvolutionaryGAN,代码行数:27,代码来源:models_uncond.py

示例5: build_discriminator_128

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import InputLayer [as 别名]
def build_discriminator_128(image=None,ndf=128):
    lrelu = LeakyRectify(0.2)
    # input: images
    InputImg = InputLayer(shape=(None, 3, 128, 128), input_var=image)
    print ("Dis Img_input:", InputImg.output_shape)
    # Conv Layer
    dis1 = Conv2DLayer(InputImg, ndf, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu)
    print ("Dis conv1:", dis1.output_shape)
    # Conv Layer
    dis2 = batch_norm(Conv2DLayer(dis1, ndf*2, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu))
    print ("Dis conv2:", dis2.output_shape)
    # Conv Layer
    dis3 = batch_norm(Conv2DLayer(dis2, ndf*4, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu))
    print ("Dis conv3:", dis3.output_shape)
    # Conv Layer
    dis4 = batch_norm(Conv2DLayer(dis3, ndf*8, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu))
    print ("Dis conv3:", dis4.output_shape)
    # Conv Layer
    dis5 = batch_norm(Conv2DLayer(dis4, ndf*16, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu))
    print ("Dis conv4:", dis5.output_shape)
    # Conv Layer
    dis6 = DenseLayer(dis5, 1, W=Normal(0.02), nonlinearity=sigmoid)
    print ("Dis output:", dis6.output_shape)
    return dis6 
开发者ID:WANG-Chaoyue,项目名称:EvolutionaryGAN,代码行数:26,代码来源:models_uncond.py

示例6: network_classifier

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import InputLayer [as 别名]
def network_classifier(self, input_var):

        network = {}
        network['classifier/input'] = InputLayer(shape=(None, 3, 64, 64), input_var=input_var, name='classifier/input')
        network['classifier/conv1'] = Conv2DLayer(network['classifier/input'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv1')
        network['classifier/pool1'] = MaxPool2DLayer(network['classifier/conv1'], pool_size=2, stride=2, pad=0, name='classifier/pool1')
        network['classifier/conv2'] = Conv2DLayer(network['classifier/pool1'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv2')
        network['classifier/pool2'] = MaxPool2DLayer(network['classifier/conv2'], pool_size=2, stride=2, pad=0, name='classifier/pool2')
        network['classifier/conv3'] = Conv2DLayer(network['classifier/pool2'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv3')
        network['classifier/pool3'] = MaxPool2DLayer(network['classifier/conv3'], pool_size=2, stride=2, pad=0, name='classifier/pool3')
        network['classifier/conv4'] = Conv2DLayer(network['classifier/pool3'], num_filters=32, filter_size=3, stride=1, pad='valid', nonlinearity=rectify, name='classifier/conv4')
        network['classifier/pool4'] = MaxPool2DLayer(network['classifier/conv4'], pool_size=2, stride=2, pad=0, name='classifier/pool4')
        network['classifier/dense1'] = DenseLayer(network['classifier/pool4'], num_units=64, nonlinearity=rectify, name='classifier/dense1')
        network['classifier/output'] = DenseLayer(network['classifier/dense1'], num_units=10, nonlinearity=softmax, name='classifier/output')

        return network 
开发者ID:davidtellez,项目名称:adda_mnist64,代码行数:18,代码来源:adda_network.py

示例7: setup_transform_net

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import InputLayer [as 别名]
def setup_transform_net(self, input_var=None):
		transform_net = InputLayer(shape=self.shape, input_var=input_var)
		transform_net = style_conv_block(transform_net, self.num_styles, 32, 9, 1)
		transform_net = style_conv_block(transform_net, self.num_styles, 64, 3, 2)
		transform_net = style_conv_block(transform_net, self.num_styles, 128, 3, 2)
		for _ in range(5):
			transform_net = residual_block(transform_net, self.num_styles)
		transform_net = nn_upsample(transform_net, self.num_styles)
		transform_net = nn_upsample(transform_net, self.num_styles)

		if self.net_type == 0:
			transform_net = style_conv_block(transform_net, self.num_styles, 3, 9, 1, tanh)
			transform_net = ExpressionLayer(transform_net, lambda X: 150.*X, output_shape=None)
		elif self.net_type == 1:
			transform_net = style_conv_block(transform_net, self.num_styles, 3, 9, 1, sigmoid)

		self.network['transform_net'] = transform_net 
开发者ID:joelmoniz,项目名称:gogh-figure,代码行数:19,代码来源:model.py

示例8: __init__

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import InputLayer [as 别名]
def __init__(self, input_shape, output_dim, servoing_pol,
                 name=None, input_var=None):

        if name is None:
            prefix = ""
        else:
            prefix = name + "_"

        if len(input_shape) == 3:
            l_in = L.InputLayer(shape=(None, np.prod(input_shape)), input_var=input_var)
            l_hid = L.reshape(l_in, ([0],) + input_shape)
        elif len(input_shape) == 2:
            l_in = L.InputLayer(shape=(None, np.prod(input_shape)), input_var=input_var)
            input_shape = (1,) + input_shape
            l_hid = L.reshape(l_in, ([0],) + input_shape)
        else:
            l_in = L.InputLayer(shape=(None,) + input_shape, input_var=input_var)
            l_hid = l_in

        l_out = TheanoServoingPolicyLayer(l_hid, servoing_pol)
        self._l_in = l_in
        self._l_out = l_out
        self._input_var = l_in.input_var 
开发者ID:alexlee-gk,项目名称:visual_dynamics,代码行数:25,代码来源:servoing_policy_network.py

示例9: test_conv2d

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import InputLayer [as 别名]
def test_conv2d(x_shape, num_filters, filter_size, flip_filters, batch_size=2):
    X_var = T.tensor4('X')
    l_x = L.InputLayer(shape=(None,) + x_shape, input_var=X_var, name='x')
    X = np.random.random((batch_size,) + x_shape).astype(theano.config.floatX)

    l_conv = L.Conv2DLayer(l_x, num_filters, filter_size=filter_size, stride=1, pad='same',
                           flip_filters=flip_filters, untie_biases=True, nonlinearity=None, b=None)
    conv_var = L.get_output(l_conv)
    conv_fn = theano.function([X_var], conv_var)
    tic()
    conv = conv_fn(X)
    toc("conv time for x_shape=%r, num_filters=%r, filter_size=%r, flip_filters=%r, batch_size=%r\n\t" %
        (x_shape, num_filters, filter_size, flip_filters, batch_size))

    tic()
    loop_conv = conv2d(X, l_conv.W.get_value(), flip_filters=flip_filters)
    toc("loop conv time for x_shape=%r, num_filters=%r, filter_size=%r, flip_filters=%r, batch_size=%r\n\t" %
        (x_shape, num_filters, filter_size, flip_filters, batch_size))

    assert np.allclose(conv, loop_conv, atol=1e-6) 
开发者ID:alexlee-gk,项目名称:visual_dynamics,代码行数:22,代码来源:test_layers_theano.py

示例10: test_locally_connected2d

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import InputLayer [as 别名]
def test_locally_connected2d(x_shape, num_filters, filter_size, flip_filters, batch_size=2):
    X_var = T.tensor4('X')
    l_x = L.InputLayer(shape=(None,) + x_shape, input_var=X_var, name='x')
    X = np.random.random((batch_size,) + x_shape).astype(theano.config.floatX)

    l_conv = LT.LocallyConnected2DLayer(l_x, num_filters, filter_size=filter_size, stride=1, pad='same',
                                        flip_filters=flip_filters, untie_biases=True, nonlinearity=None, b=None)
    conv_var = L.get_output(l_conv)
    conv_fn = theano.function([X_var], conv_var)
    tic()
    conv = conv_fn(X)
    toc("locally connected time for x_shape=%r, num_filters=%r, filter_size=%r, flip_filters=%r, batch_size=%r\n\t" %
        (x_shape, num_filters, filter_size, flip_filters, batch_size))

    tic()
    loop_conv = locally_connected2d(X, l_conv.W.get_value(), flip_filters=flip_filters)
    toc("loop locally connected time for x_shape=%r, num_filters=%r, filter_size=%r, flip_filters=%r, batch_size=%r\n\t" %
        (x_shape, num_filters, filter_size, flip_filters, batch_size))

    assert np.allclose(conv, loop_conv, atol=1e-6) 
开发者ID:alexlee-gk,项目名称:visual_dynamics,代码行数:22,代码来源:test_layers_theano.py

示例11: test_channelwise_locally_connected2d

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import InputLayer [as 别名]
def test_channelwise_locally_connected2d(x_shape, filter_size, flip_filters, batch_size=2):
    X_var = T.tensor4('X')
    l_x = L.InputLayer(shape=(None,) + x_shape, input_var=X_var, name='x')
    X = np.random.random((batch_size,) + x_shape).astype(theano.config.floatX)

    l_conv = LT.LocallyConnected2DLayer(l_x, x_shape[0], filter_size=filter_size, channelwise=True,
                                        stride=1, pad='same', flip_filters=flip_filters,
                                        untie_biases=True, nonlinearity=None, b=None)
    conv_var = L.get_output(l_conv)
    conv_fn = theano.function([X_var], conv_var)
    tic()
    conv = conv_fn(X)
    toc("channelwise locally connected time for x_shape=%r, filter_size=%r, flip_filters=%r, batch_size=%r\n\t" %
        (x_shape, filter_size, flip_filters, batch_size))

    tic()
    loop_conv = channelwise_locally_connected2d(X, l_conv.W.get_value(), flip_filters=flip_filters)
    toc("loop channelwise locally connected time for x_shape=%r, filter_size=%r, flip_filters=%r, batch_size=%r\n\t" %
        (x_shape, filter_size, flip_filters, batch_size))

    assert np.allclose(conv, loop_conv, atol=1e-7) 
开发者ID:alexlee-gk,项目名称:visual_dynamics,代码行数:23,代码来源:test_layers_theano.py

示例12: build_bilinear_net

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import InputLayer [as 别名]
def build_bilinear_net(input_shapes, X_var=None, U_var=None, X_diff_var=None, axis=1):
    x_shape, u_shape = input_shapes
    X_var = X_var or T.tensor4('X')
    U_var = U_var or T.matrix('U')
    X_diff_var = X_diff_var or T.tensor4('X_diff')
    X_next_var = X_var + X_diff_var

    l_x = L.InputLayer(shape=(None,) + x_shape, input_var=X_var)
    l_u = L.InputLayer(shape=(None,) + u_shape, input_var=U_var)

    l_x_diff_pred = LT.BilinearLayer([l_x, l_u], axis=axis)
    l_x_next_pred = L.ElemwiseMergeLayer([l_x, l_x_diff_pred], T.add)
    l_y = L.flatten(l_x)
    l_y_diff_pred = L.flatten(l_x_diff_pred)

    X_next_pred_var = lasagne.layers.get_output(l_x_next_pred)
    loss = ((X_next_var - X_next_pred_var) ** 2).mean(axis=0).sum() / 2.

    net_name = 'BilinearNet'
    input_vars = OrderedDict([(var.name, var) for var in [X_var, U_var, X_diff_var]])
    pred_layers = OrderedDict([('y_diff_pred', l_y_diff_pred), ('y', l_y), ('x0_next_pred', l_x_next_pred)])
    return net_name, input_vars, pred_layers, loss 
开发者ID:alexlee-gk,项目名称:visual_dynamics,代码行数:24,代码来源:net_theano.py

示例13: build_model

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import InputLayer [as 别名]
def build_model(self):
        '''
        Build Acoustic Event Net model
        :return:
        '''

        # A architecture 41 classes
        nonlin = lasagne.nonlinearities.rectify
        net = {}
        net['input'] = InputLayer((None, feat_shape[0], feat_shape[1], feat_shape[2]))  # channel, time. frequency
        # ----------- 1st layer group ---------------
        net['conv1a'] = ConvLayer(net['input'], num_filters=64, filter_size=(3, 3), stride=1, nonlinearity=nonlin)
        net['conv1b'] = ConvLayer(net['conv1a'], num_filters=64, filter_size=(3, 3), stride=1, nonlinearity=nonlin)
        net['pool1'] = MaxPool2DLayer(net['conv1b'], pool_size=(1, 2))  # (time, freq)
        # ----------- 2nd layer group ---------------
        net['conv2a'] = ConvLayer(net['pool1'], num_filters=128, filter_size=(3, 3), stride=1, nonlinearity=nonlin)
        net['conv2b'] = ConvLayer(net['conv2a'], num_filters=128, filter_size=(3, 3), stride=1, nonlinearity=nonlin)
        net['pool2'] = MaxPool2DLayer(net['conv2b'], pool_size=(2, 2))  # (time, freq)
        # ----------- fully connected layer group ---------------
        net['fc5'] = DenseLayer(net['pool2'], num_units=1024, nonlinearity=nonlin)
        net['fc6'] = DenseLayer(net['fc5'], num_units=1024, nonlinearity=nonlin)
        net['prob'] = DenseLayer(net['fc6'], num_units=41, nonlinearity=lasagne.nonlinearities.softmax)

        return net 
开发者ID:znaoya,项目名称:aenet,代码行数:26,代码来源:__init__.py

示例14: __init__

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import InputLayer [as 别名]
def __init__(self):
        self.network = collections.OrderedDict()
        self.network['img'] = InputLayer((None, 3, None, None))
        self.network['seed'] = InputLayer((None, 3, None, None))

        config, params = self.load_model()
        self.setup_generator(self.last_layer(), config)

        if args.train:
            concatenated = lasagne.layers.ConcatLayer([self.network['img'], self.network['out']], axis=0)
            self.setup_perceptual(concatenated)
            self.load_perceptual()
            self.setup_discriminator()
        self.load_generator(params)
        self.compile()

    #------------------------------------------------------------------------------------------------------------------
    # Network Configuration
    #------------------------------------------------------------------------------------------------------------------ 
开发者ID:alexjc,项目名称:neural-enhance,代码行数:21,代码来源:enhance.py

示例15: OrthoInitRecurrent

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import InputLayer [as 别名]
def OrthoInitRecurrent(input_var, mask_var=None, batch_size=1, n_in=100, n_out=1, n_hid=200, init_val=0.9, out_nlin=lasagne.nonlinearities.linear):
    # Input Layer
    l_in         = InputLayer((batch_size, None, n_in), input_var=input_var)
    if mask_var==None:
        l_mask=None
    else:
        l_mask = InputLayer((batch_size, None), input_var=mask_var)

    _, seqlen, _ = l_in.input_var.shape
    
    l_in_hid     = DenseLayer(lasagne.layers.InputLayer((None, n_in)), n_hid,  W=lasagne.init.GlorotNormal(0.95), nonlinearity=lasagne.nonlinearities.linear)
    l_hid_hid    = DenseLayer(lasagne.layers.InputLayer((None, n_hid)), n_hid, W=lasagne.init.Orthogonal(gain=init_val), nonlinearity=lasagne.nonlinearities.linear)
    l_rec        = lasagne.layers.CustomRecurrentLayer(l_in, l_in_hid, l_hid_hid, nonlinearity=lasagne.nonlinearities.tanh, mask_input=l_mask, grad_clipping=100)

    # Output Layer
    l_shp        = ReshapeLayer(l_rec, (-1, n_hid))
    l_dense      = DenseLayer(l_shp, num_units=n_out, W=lasagne.init.GlorotNormal(0.95), nonlinearity=out_nlin)
    
    # To reshape back to our original shape, we can use the symbolic shape variables we retrieved above.
    l_out        = ReshapeLayer(l_dense, (batch_size, seqlen, n_out))

    return l_out, l_rec 
开发者ID:eminorhan,项目名称:recurrent-memory,代码行数:24,代码来源:models.py


注:本文中的lasagne.layers.InputLayer方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。