当前位置: 首页>>代码示例>>Python>>正文


Python layers.ElemwiseSumLayer方法代码示例

本文整理汇总了Python中lasagne.layers.ElemwiseSumLayer方法的典型用法代码示例。如果您正苦于以下问题:Python layers.ElemwiseSumLayer方法的具体用法?Python layers.ElemwiseSumLayer怎么用?Python layers.ElemwiseSumLayer使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在lasagne.layers的用法示例。


在下文中一共展示了layers.ElemwiseSumLayer方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: residual_block

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import ElemwiseSumLayer [as 别名]
def residual_block(resnet_in, num_styles=None, num_filters=None, filter_size=3, stride=1):
	if num_filters == None:
		num_filters = resnet_in.output_shape[1]

	conv1 = style_conv_block(resnet_in, num_styles, num_filters, filter_size, stride)
	conv2 = style_conv_block(conv1, num_styles, num_filters, filter_size, stride, linear)
	res_block = ElemwiseSumLayer([conv2, resnet_in])

	return res_block 
开发者ID:joelmoniz,项目名称:gogh-figure,代码行数:11,代码来源:layers.py

示例2: residual_block

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import ElemwiseSumLayer [as 别名]
def residual_block(l, increase_dim=False, projection=True, first=False):
    """
    Create a residual learning building block with two stacked 3x3 convlayers as in paper
    'Identity Mappings in Deep Residual Networks', Kaiming He et al. 2016 (https://arxiv.org/abs/1603.05027)
    """
    input_num_filters = l.output_shape[1]
    if increase_dim:
        first_stride = (2, 2)
        out_num_filters = input_num_filters * 2
    else:
        first_stride = (1, 1)
        out_num_filters = input_num_filters

    if first:
        # hacky solution to keep layers correct
        bn_pre_relu = l
    else:
        # contains the BN -> ReLU portion, steps 1 to 2
        bn_pre_conv = BatchNormLayer(l)
        bn_pre_relu = NonlinearityLayer(bn_pre_conv, rectify)

    # contains the weight -> BN -> ReLU portion, steps 3 to 5
    conv_1 = batch_norm(ConvLayer(bn_pre_relu, num_filters=out_num_filters, filter_size=(3, 3), stride=first_stride,
                                  nonlinearity=rectify, pad='same', W=he_norm))

    # contains the last weight portion, step 6
    conv_2 = ConvLayer(conv_1, num_filters=out_num_filters, filter_size=(3, 3), stride=(1, 1), nonlinearity=None,
                       pad='same', W=he_norm)

    # add shortcut connections
    if increase_dim:
        # projection shortcut, as option B in paper
        projection = ConvLayer(l, num_filters=out_num_filters, filter_size=(1, 1), stride=(2, 2), nonlinearity=None,
                               pad='same', b=None)
        block = ElemwiseSumLayer([conv_2, projection])
    else:
        block = ElemwiseSumLayer([conv_2, l])

    return block 
开发者ID:CPJKU,项目名称:dcase_task2,代码行数:41,代码来源:res_net_blocks.py

示例3: ResLayer

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import ElemwiseSumLayer [as 别名]
def ResLayer(incoming, IB):
    return NL(ESL([IB,incoming]),elu) 
开发者ID:ajbrock,项目名称:Generative-and-Discriminative-Voxel-Modeling,代码行数:4,代码来源:ensemble_model3.py

示例4: get_output_for

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import ElemwiseSumLayer [as 别名]
def get_output_for(self, input, deterministic=False, **kwargs):
        if deterministic:
            return self.p*input
        else:
            return theano.ifelse.ifelse(
                T.lt(self._srng.uniform( (1,), 0, 1)[0], self.p),
                input,
                T.zeros(input.shape)
            ) 

# def ResDrop(incoming, IB, p):
    # return NL(ESL([IfElseDropLayer(IB,survival_p=p),incoming]),elu) 
开发者ID:ajbrock,项目名称:Generative-and-Discriminative-Voxel-Modeling,代码行数:14,代码来源:ensemble_model3.py

示例5: ResDrop

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import ElemwiseSumLayer [as 别名]
def ResDrop(incoming, IB, p):
    return ESL([IfElseDropLayer(IB,survival_p=p),incoming]) 
开发者ID:ajbrock,项目名称:Generative-and-Discriminative-Voxel-Modeling,代码行数:4,代码来源:ensemble_model3.py

示例6: ResDropNoPre

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import ElemwiseSumLayer [as 别名]
def ResDropNoPre(incoming, IB, p):
    return NL(ESL([IfElseDropLayer(IB,survival_p=p),incoming]),elu) 
开发者ID:ajbrock,项目名称:Generative-and-Discriminative-Voxel-Modeling,代码行数:4,代码来源:ensemble_model3.py

示例7: ResDrop

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import ElemwiseSumLayer [as 别名]
def ResDrop(incoming, IB, p):
    return NL(ESL([IfElseDropLayer(IB,survival_p=p),incoming]),elu) 
开发者ID:ajbrock,项目名称:Generative-and-Discriminative-Voxel-Modeling,代码行数:4,代码来源:ensemble_model1.py

示例8: ResLayer

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import ElemwiseSumLayer [as 别名]
def ResLayer(incoming, IB):
    return NL(ESL([IB,incoming]),elu)
    
   
# If-else Drop Layer, adopted from Christopher Beckham's recipe:
#  https://github.com/Lasagne/Recipes/pull/67 
开发者ID:ajbrock,项目名称:Generative-and-Discriminative-Voxel-Modeling,代码行数:8,代码来源:VRN.py

示例9: ResDrop

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import ElemwiseSumLayer [as 别名]
def ResDrop(incoming, IB, p):
    return ESL([IfElseDropLayer(IB,survival_p=p),incoming])
    
# Non-preactivation stochastically-dropped Resnet Wrapper 
开发者ID:ajbrock,项目名称:Generative-and-Discriminative-Voxel-Modeling,代码行数:6,代码来源:VRN.py

示例10: make_block

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import ElemwiseSumLayer [as 别名]
def make_block(self, name, input, units):
        self.make_layer(name+'-A', input, units, alpha=0.1)
        # self.make_layer(name+'-B', self.last_layer(), units, alpha=1.0)
        return ElemwiseSumLayer([input, self.last_layer()]) if args.generator_residual else self.last_layer() 
开发者ID:alexjc,项目名称:neural-enhance,代码行数:6,代码来源:enhance.py

示例11: MDBLOCK

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import ElemwiseSumLayer [as 别名]
def MDBLOCK(incoming,num_filters,scales,name,nonlinearity):
    return NL(BN(ESL([incoming,
         MDCL(NL(BN(MDCL(NL(BN(incoming,name=name+'bnorm0'),nonlinearity),num_filters,scales,name),name=name+'bnorm1'),nonlinearity),
              num_filters,
              scales,
              name+'2')]),name=name+'bnorm2'),nonlinearity)  
              
# Gaussian Sample Layer for VAE from Tencia Lee 
开发者ID:ajbrock,项目名称:Neural-Photo-Editor,代码行数:10,代码来源:layers.py

示例12: GL

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import ElemwiseSumLayer [as 别名]
def GL(mu,ls):
    return([GSL(z_mu,z_ls) for z_mu,z_ls in zip(mu,ls)])

# Convenience function to return a residual layer. It's not really that much more convenient than ESL'ing,
# but I like being able to see when I'm using Residual connections as opposed to Elemwise-sums 
开发者ID:ajbrock,项目名称:Neural-Photo-Editor,代码行数:7,代码来源:layers.py

示例13: ResLayer

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import ElemwiseSumLayer [as 别名]
def ResLayer(incoming, IB,nonlinearity):
    return NL(ESL([IB,incoming]),nonlinearity)


# Inverse autoregressive flow layer 
开发者ID:ajbrock,项目名称:Neural-Photo-Editor,代码行数:7,代码来源:layers.py

示例14: get_output_for

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import ElemwiseSumLayer [as 别名]
def get_output_for(self,input, **kwargs):
        if input.ndim > 2:
            input = input.flatten(2)
        activation = T.dot(input, self.W*self.weights_mask)
        if self.b is not None:
            activation = activation + self.b.dimshuffle('x', 0)
        return self.nonlinearity(activation)

        
# Stripped-Down Direct Input masked layer: Combine this with ESL and a masked layer to get a true DIML.
# Consider making this a simultaneous subclass of MaskedLayer and elemwise sum layer for cleanliness
#  adopted from M.Germain 
开发者ID:ajbrock,项目名称:Neural-Photo-Editor,代码行数:14,代码来源:layers.py

示例15: build_vgg_action_cond_encoder_net

# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import ElemwiseSumLayer [as 别名]
def build_vgg_action_cond_encoder_net(input_shapes, levels=None, x1_c_dim=16, bilinear_type='share', tanh=False):
    x_shape, u_shape = input_shapes
    assert len(x_shape) == 3
    assert len(u_shape) == 1
    levels = levels or [3]
    levels = sorted(set(levels))

    X_var = T.tensor4('x')
    U_var = T.matrix('u')
    X_next_var = T.tensor4('x_next')

    l_x = L.InputLayer(shape=(None,) + x_shape, input_var=X_var, name='x')
    l_u = L.InputLayer(shape=(None,) + u_shape, input_var=U_var, name='u')
    l_x_next = L.InputLayer(shape=(None,) + x_shape, input_var=X_next_var, name='x_next')

    xlevels_c_dim = OrderedDict()
    for level in range(levels[-1]+1):
        if level == 0:
            xlevels_c_dim[level] = x_shape[0]
        else:
            xlevels_c_dim[level] = x1_c_dim * 2**(level-1)

    # encoding
    l_xlevels = OrderedDict()
    for level in range(levels[-1]+1):
        if level == 0:
            l_xlevel = l_x
        else:
            l_xlevel = LT.VggEncodingLayer(l_xlevels[level-1], xlevels_c_dim[level], name='x%d' % level)
        l_xlevels[level] = l_xlevel

    # bilinear
    l_xlevels_next_pred = OrderedDict()
    for level in levels:
        l_xlevel = l_xlevels[level]
        l_xlevel_diff_pred = LT.create_bilinear_layer(l_xlevel, l_u, level, bilinear_type=bilinear_type, name='x%d_diff_pred' % level)
        l_xlevels_next_pred[level] = L.ElemwiseSumLayer([l_xlevel, l_xlevel_diff_pred],
                                                        name='x%d_next_pred' % level)
        if tanh:
            l_xlevels_next_pred[level].name += '_unconstrained'
            l_xlevels_next_pred[level] = L.NonlinearityLayer(l_xlevels_next_pred[level], nl.tanh,
                                                             name='x%d_next_pred' % level)

    pred_layers = OrderedDict([('x', l_xlevels[0]),
                               ('x_next', l_x_next),
                               ('x0_next', l_x_next),
                               ('x_next_pred', l_xlevels_next_pred[0]),
                               ])
    pred_layers.update([('x%d' % level, l_xlevels[level]) for level in l_xlevels.keys()])
    pred_layers.update([('x%d_next_pred' % level, l_xlevels_next_pred[level]) for level in l_xlevels_next_pred.keys()])
    return pred_layers 
开发者ID:alexlee-gk,项目名称:visual_dynamics,代码行数:53,代码来源:net_theano.py


注:本文中的lasagne.layers.ElemwiseSumLayer方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。