本文整理汇总了Python中lasagne.layers.BatchNormLayer方法的典型用法代码示例。如果您正苦于以下问题:Python layers.BatchNormLayer方法的具体用法?Python layers.BatchNormLayer怎么用?Python layers.BatchNormLayer使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类lasagne.layers
的用法示例。
在下文中一共展示了layers.BatchNormLayer方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: dense_block
# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import BatchNormLayer [as 别名]
def dense_block(network, num_layers, growth_rate, dropout, name_prefix):
# concatenated 3x3 convolutions
for n in range(num_layers):
conv = affine_relu_conv(network, channels=growth_rate,
filter_size=3, dropout=dropout,
name_prefix=name_prefix + '_l%02d' % (n + 1))
conv = BatchNormLayer(conv, name=name_prefix + '_l%02dbn' % (n + 1),
beta=None, gamma=None)
network = ConcatLayer([network, conv], axis=1,
name=name_prefix + '_l%02d_join' % (n + 1))
return network
示例2: transition
# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import BatchNormLayer [as 别名]
def transition(network, dropout, name_prefix):
# a transition 1x1 convolution followed by avg-pooling
network = affine_relu_conv(network, channels=network.output_shape[1],
filter_size=1, dropout=dropout,
name_prefix=name_prefix)
network = Pool2DLayer(network, 2, mode='average_inc_pad',
name=name_prefix + '_pool')
network = BatchNormLayer(network, name=name_prefix + '_bn',
beta=None, gamma=None)
return network
示例3: bn_relu_conv
# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import BatchNormLayer [as 别名]
def bn_relu_conv(network, channels, filter_size, dropout, name_prefix):
network = BatchNormLayer(network, name=name_prefix + '_bn')
network = NonlinearityLayer(network, nonlinearity=rectify,
name=name_prefix + '_relu')
network = Conv2DLayer(network, channels, filter_size, pad='same',
W=lasagne.init.HeNormal(gain='relu'),
b=None, nonlinearity=None,
name=name_prefix + '_conv')
if dropout:
network = DropoutLayer(network, dropout)
return network
示例4: residual_block
# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import BatchNormLayer [as 别名]
def residual_block(l, increase_dim=False, projection=True, first=False):
"""
Create a residual learning building block with two stacked 3x3 convlayers as in paper
'Identity Mappings in Deep Residual Networks', Kaiming He et al. 2016 (https://arxiv.org/abs/1603.05027)
"""
input_num_filters = l.output_shape[1]
if increase_dim:
first_stride = (2, 2)
out_num_filters = input_num_filters * 2
else:
first_stride = (1, 1)
out_num_filters = input_num_filters
if first:
# hacky solution to keep layers correct
bn_pre_relu = l
else:
# contains the BN -> ReLU portion, steps 1 to 2
bn_pre_conv = BatchNormLayer(l)
bn_pre_relu = NonlinearityLayer(bn_pre_conv, rectify)
# contains the weight -> BN -> ReLU portion, steps 3 to 5
conv_1 = batch_norm(ConvLayer(bn_pre_relu, num_filters=out_num_filters, filter_size=(3, 3), stride=first_stride,
nonlinearity=rectify, pad='same', W=he_norm))
# contains the last weight portion, step 6
conv_2 = ConvLayer(conv_1, num_filters=out_num_filters, filter_size=(3, 3), stride=(1, 1), nonlinearity=None,
pad='same', W=he_norm)
# add shortcut connections
if increase_dim:
# projection shortcut, as option B in paper
projection = ConvLayer(l, num_filters=out_num_filters, filter_size=(1, 1), stride=(2, 2), nonlinearity=None,
pad='same', b=None)
block = ElemwiseSumLayer([conv_2, projection])
else:
block = ElemwiseSumLayer([conv_2, l])
return block
示例5: ResNet_FullPreActivation
# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import BatchNormLayer [as 别名]
def ResNet_FullPreActivation(input_shape=(None, 3, PIXELS, PIXELS), input_var=None, n_classes=10, n=18):
"""
Adapted from https://github.com/Lasagne/Recipes/tree/master/papers/deep_residual_learning.
Tweaked to be consistent with 'Identity Mappings in Deep Residual Networks', Kaiming He et al. 2016 (https://arxiv.org/abs/1603.05027)
Formula to figure out depth: 6n + 2
"""
# Building the network
l_in = InputLayer(shape=input_shape, input_var=input_var)
# first layer, output is 16 x 32 x 32
l = batch_norm(ConvLayer(l_in, num_filters=16, filter_size=(3, 3), stride=(1, 1), nonlinearity=rectify, pad='same', W=he_norm))
# first stack of residual blocks, output is 16 x 32 x 32
l = residual_block(l, first=True)
for _ in range(1, n):
l = residual_block(l)
# second stack of residual blocks, output is 32 x 16 x 16
l = residual_block(l, increase_dim=True)
for _ in range(1, n):
l = residual_block(l)
# third stack of residual blocks, output is 64 x 8 x 8
l = residual_block(l, increase_dim=True)
for _ in range(1, n):
l = residual_block(l)
bn_post_conv = BatchNormLayer(l)
bn_post_relu = NonlinearityLayer(bn_post_conv, rectify)
# average pooling
avg_pool = GlobalPoolLayer(bn_post_relu)
# fully connected layer
network = DenseLayer(avg_pool, num_units=n_classes, W=HeNormal(), nonlinearity=softmax)
return network
示例6: get_output_for
# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import BatchNormLayer [as 别名]
def get_output_for(self, input, deterministic=False,
batch_norm_use_averages=None,
batch_norm_update_averages=None, **kwargs):
# If the BN vars shall be updates as before, redirect to the parent
# implementation.
if not isinstance(batch_norm_update_averages, dict):
return super(BatchNormLayer, self).get_output_for(
input, deterministic, batch_norm_use_averages,
batch_norm_update_averages, **kwargs)
else:
input_mean = input.mean(self.axes)
input_inv_std = T.inv(T.sqrt(input.var(self.axes) + self.epsilon))
# Decide whether to use the stored averages or mini-batch statistics
if batch_norm_use_averages is None:
batch_norm_use_averages = deterministic
use_averages = batch_norm_use_averages
if use_averages:
mean = self.mean
inv_std = self.inv_std
else:
mean = input_mean
inv_std = input_inv_std
# Instead of automatically updating the averages, we add the update
# ops to a dictionary.
update_averages = batch_norm_update_averages
if isinstance(update_averages, dict):
update_averages[self.mean] = ((1 - self.alpha) * self.mean +
self.alpha * input_mean)
update_averages[self.inv_std] = ((1 - self.alpha) *
self.inv_std + self.alpha *
input_inv_std)
# prepare dimshuffle pattern inserting broadcastable axes as needed
param_axes = iter(range(input.ndim - len(self.axes)))
pattern = ['x' if input_axis in self.axes
else next(param_axes)
for input_axis in range(input.ndim)]
# apply dimshuffle pattern to all parameters
beta = 0 if self.beta is None else self.beta.dimshuffle(pattern)
gamma = 1 if self.gamma is None else self.gamma.dimshuffle(pattern)
mean = mean.dimshuffle(pattern)
inv_std = inv_std.dimshuffle(pattern)
# normalize
normalized = (input - mean) * (gamma * inv_std) + beta
return normalized
示例7: residual_bottleneck_block
# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import BatchNormLayer [as 别名]
def residual_bottleneck_block(l, increase_dim=False, first=False):
"""
Create a residual learning building block with two stacked 3x3 conv layers as in paper
'Identity Mappings in Deep Residual Networks', Kaiming He et al. 2016 (https://arxiv.org/abs/1603.05027)
"""
input_num_filters = l.output_shape[1]
if increase_dim:
first_stride = (2, 2)
out_num_filters = input_num_filters * 2
else:
first_stride = (1, 1)
out_num_filters = input_num_filters
if first:
# hacky solution to keep layers correct
bn_pre_relu = l
out_num_filters = out_num_filters * 4
else:
# contains the BN -> ReLU portion, steps 1 to 2
bn_pre_conv = BatchNormLayer(l)
bn_pre_relu = NonlinearityLayer(bn_pre_conv, rectify)
bottleneck_filters = out_num_filters / 4
# contains the weight -> BN -> ReLU portion, steps 3 to 5
conv_1 = batch_norm(
ConvLayer(bn_pre_relu, num_filters=bottleneck_filters, filter_size=(1, 1), stride=(1, 1), nonlinearity=rectify,
pad='same', W=he_norm))
conv_2 = batch_norm(
ConvLayer(conv_1, num_filters=bottleneck_filters, filter_size=(3, 3), stride=first_stride, nonlinearity=rectify,
pad='same', W=he_norm))
# contains the last weight portion, step 6
conv_3 = ConvLayer(conv_2, num_filters=out_num_filters, filter_size=(1, 1), stride=(1, 1), nonlinearity=None,
pad='same', W=he_norm)
if increase_dim:
# projection shortcut, as option B in paper
projection = ConvLayer(l, num_filters=out_num_filters, filter_size=(1, 1), stride=(2, 2), nonlinearity=None,
pad='same', b=None)
block = ElemwiseSumLayer([conv_3, projection])
elif first:
# projection shortcut, as option B in paper
projection = ConvLayer(l, num_filters=out_num_filters, filter_size=(1, 1), stride=(1, 1), nonlinearity=None,
pad='same', b=None)
block = ElemwiseSumLayer([conv_3, projection])
else:
block = ElemwiseSumLayer([conv_3, l])
return block
示例8: residual_wide_block
# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import BatchNormLayer [as 别名]
def residual_wide_block(l, increase_dim=False, projection=True, first=False, filters=16):
""" Create a residual learning building block with two stacked 3x3 conv layers as in paper """
if increase_dim:
first_stride = (2, 2)
else:
first_stride = (1, 1)
if first:
# hacky solution to keep layers correct
bn_pre_relu = l
else:
# contains the BN -> ReLU portion, steps 1 to 2
bn_pre_conv = BatchNormLayer(l)
bn_pre_relu = NonlinearityLayer(bn_pre_conv, rectify)
# contains the weight -> BN -> ReLU portion, steps 3 to 5
conv_1 = batch_norm(
ConvLayer(bn_pre_relu, num_filters=filters, filter_size=(3, 3), stride=first_stride, nonlinearity=rectify,
pad='same', W=he_norm))
dropout = DropoutLayer(conv_1, p=0.3)
# contains the last weight portion, step 6
conv_2 = ConvLayer(dropout, num_filters=filters, filter_size=(3, 3), stride=(1, 1), nonlinearity=None, pad='same',
W=he_norm)
# add shortcut connections
if increase_dim:
# projection shortcut, as option B in paper
projection = ConvLayer(l, num_filters=filters, filter_size=(1, 1), stride=(2, 2), nonlinearity=None, pad='same',
b=None)
block = ElemwiseSumLayer([conv_2, projection])
elif first:
# projection shortcut, as option B in paper
projection = ConvLayer(l, num_filters=filters, filter_size=(1, 1), stride=(1, 1), nonlinearity=None, pad='same',
b=None)
block = ElemwiseSumLayer([conv_2, projection])
else:
block = ElemwiseSumLayer([conv_2, l])
return block
示例9: ResNet_BottleNeck_FullPreActivation
# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import BatchNormLayer [as 别名]
def ResNet_BottleNeck_FullPreActivation(input_shape=(None, 3, PIXELS, PIXELS), input_var=None, n_classes=10, n=18):
'''
Adapted from https://github.com/Lasagne/Recipes/tree/master/papers/deep_residual_learning.
Tweaked to be consistent with 'Identity Mappings in Deep Residual Networks', Kaiming He et al. 2016 (https://arxiv.org/abs/1603.05027)
Judging from https://github.com/KaimingHe/resnet-1k-layers/blob/master/resnet-pre-act.lua.
Number of filters go 16 -> 64 -> 128 -> 256
Forumala to figure out depth: 9n + 2
'''
# Building the network
l_in = InputLayer(shape=input_shape, input_var=input_var)
# first layer, output is 16x16x16
l = batch_norm(ConvLayer(l_in, num_filters=16, filter_size=(3, 3), stride=(1, 1), nonlinearity=rectify, pad='same', W=he_norm))
# first stack of residual blocks, output is 64x16x16
l = residual_bottleneck_block(l, first=True)
for _ in range(1, n):
l = residual_bottleneck_block(l)
# second stack of residual blocks, output is 128x8x8
l = residual_bottleneck_block(l, increase_dim=True)
for _ in range(1, n):
l = residual_bottleneck_block(l)
# third stack of residual blocks, output is 256x4x4
l = residual_bottleneck_block(l, increase_dim=True)
for _ in range(1, n):
l = residual_bottleneck_block(l)
bn_post_conv = BatchNormLayer(l)
bn_post_relu = NonlinearityLayer(bn_post_conv, rectify)
# average pooling
avg_pool = GlobalPoolLayer(bn_post_relu)
# fully connected layer
network = DenseLayer(avg_pool, num_units=n_classes, W=HeNormal(), nonlinearity=softmax)
return network
示例10: build_model
# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import BatchNormLayer [as 别名]
def build_model():
#################
# Regular model #
#################
input_size = data_sizes["sliced:data:singleslice:difference"]
l0 = InputLayer(input_size)
# add channel layer
# l0r = reshape(l0, (-1, 1, ) + input_size[1:])
# (batch, channel, time, x, y)
l = ConvolutionOver2DAxisLayer(l0, num_filters=40, filter_size=(5, 5),
axis=(2,3), channel=1,
W=lasagne.init.Orthogonal(),
b=lasagne.init.Constant(0.1),
nonlinearity=lasagne.nonlinearities.identity
)
l = BatchNormLayer(l, gamma=None)
l = lasagne.layers.NonlinearityLayer(l, nonlinearity=lasagne.nonlinearities.rectify)
l = MaxPoolOver2DAxisLayer(l, pool_size=(2, 2), axis=(2,3), stride=(2,2))
l = ConvolutionOver2DAxisLayer(l, num_filters=40, filter_size=(3, 3),
axis=(2,3), channel=1,
W=lasagne.init.Orthogonal(),
b=lasagne.init.Constant(0.1),
nonlinearity=lasagne.nonlinearities.identity
)
l = BatchNormLayer(l, gamma=None)
l = lasagne.layers.NonlinearityLayer(l, nonlinearity=lasagne.nonlinearities.rectify)
l = MaxPoolOver2DAxisLayer(l, pool_size=(2, 2), axis=(2,3), stride=(2,2))
l_systole = lasagne.layers.DenseLayer(lasagne.layers.DropoutLayer(l),
num_units=600,
nonlinearity=lasagne.nonlinearities.softmax)
l_diastole = lasagne.layers.DenseLayer(lasagne.layers.DropoutLayer(l),
num_units=600,
nonlinearity=lasagne.nonlinearities.softmax)
return {
"inputs":{
"sliced:data:singleslice:difference": l0
},
"outputs": {
"systole:onehot": l_systole,
"diastole:onehot": l_diastole,
}
}
示例11: build_model
# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import BatchNormLayer [as 别名]
def build_model():
#################
# Regular model #
#################
input_size = data_sizes["sliced:data:singleslice:difference:middle"]
l0 = InputLayer(input_size)
# add channel layer
# l0r = reshape(l0, (-1, 1, ) + input_size[1:])
# (batch, channel, time, x, y)
l = ConvolutionOver2DAxisLayer(l0, num_filters=40, filter_size=(5, 5),
axis=(2,3), channel=1,
W=lasagne.init.Orthogonal(),
b=lasagne.init.Constant(0.1),
nonlinearity=lasagne.nonlinearities.identity
)
l = BatchNormLayer(l, gamma=None)
l = lasagne.layers.NonlinearityLayer(l, nonlinearity=lasagne.nonlinearities.rectify)
l = MaxPoolOver2DAxisLayer(l, pool_size=(2, 2), axis=(2,3), stride=(2,2))
l = ConvolutionOver2DAxisLayer(l, num_filters=40, filter_size=(3, 3),
axis=(2,3), channel=1,
W=lasagne.init.Orthogonal(),
b=lasagne.init.Constant(0.1),
nonlinearity=lasagne.nonlinearities.identity
)
l = BatchNormLayer(l, gamma=None)
l = lasagne.layers.NonlinearityLayer(l, nonlinearity=lasagne.nonlinearities.rectify)
l = MaxPoolOver2DAxisLayer(l, pool_size=(2, 2), axis=(2,3), stride=(2,2))
l_systole = lasagne.layers.DenseLayer(lasagne.layers.DropoutLayer(l),
num_units=600,
nonlinearity=lasagne.nonlinearities.softmax)
l_diastole = lasagne.layers.DenseLayer(lasagne.layers.DropoutLayer(l),
num_units=600,
nonlinearity=lasagne.nonlinearities.softmax)
return {
"inputs":{
"sliced:data:singleslice:difference": l0
},
"outputs": {
"systole:onehot": l_systole,
"diastole:onehot": l_diastole,
}
}
示例12: build_model
# 需要导入模块: from lasagne import layers [as 别名]
# 或者: from lasagne.layers import BatchNormLayer [as 别名]
def build_model():
#################
# Regular model #
#################
input_size = data_sizes["sliced:data:singleslice:difference:middle"]
l0 = InputLayer(input_size)
# add channel layer
# l0r = reshape(l0, (-1, 1, ) + input_size[1:])
# (batch, channel, time, x, y)
l = ConvolutionOver2DAxisLayer(l0, num_filters=40, filter_size=(5, 5),
axis=(2,3), channel=1,
W=lasagne.init.Orthogonal(),
b=lasagne.init.Constant(0.1),
nonlinearity=lasagne.nonlinearities.identity
)
l = BatchNormLayer(l, gamma=None)
l = lasagne.layers.NonlinearityLayer(l, nonlinearity=lasagne.nonlinearities.rectify)
l = MaxPoolOver2DAxisLayer(l, pool_size=(2, 2), axis=(2,3), stride=(2,2))
l = ConvolutionOver2DAxisLayer(l, num_filters=40, filter_size=(3, 3),
axis=(2,3), channel=1,
W=lasagne.init.Orthogonal(),
b=lasagne.init.Constant(0.1),
nonlinearity=lasagne.nonlinearities.identity
)
l = BatchNormLayer(l, gamma=None)
l = lasagne.layers.NonlinearityLayer(l, nonlinearity=lasagne.nonlinearities.rectify)
l = MaxPoolOver2DAxisLayer(l, pool_size=(2, 2), axis=(2,3), stride=(2,2))
l_systole = lasagne.layers.DenseLayer(lasagne.layers.DropoutLayer(l),
num_units=600,
nonlinearity=lasagne.nonlinearities.softmax)
l_diastole = lasagne.layers.DenseLayer(lasagne.layers.DropoutLayer(l),
num_units=600,
nonlinearity=lasagne.nonlinearities.softmax)
return {
"inputs":{
"sliced:data:singleslice:difference": l0
},
"outputs": {
"systole:onehot": l_systole,
"diastole:onehot": l_diastole,
}
}