本文整理汇总了Python中lasagne.init.Normal方法的典型用法代码示例。如果您正苦于以下问题:Python init.Normal方法的具体用法?Python init.Normal怎么用?Python init.Normal使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类lasagne.init
的用法示例。
在下文中一共展示了init.Normal方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build_discriminator_toy
# 需要导入模块: from lasagne import init [as 别名]
# 或者: from lasagne.init import Normal [as 别名]
def build_discriminator_toy(image=None, nd=512, GP_norm=None):
Input = InputLayer(shape=(None, 2), input_var=image)
print ("Dis input:", Input.output_shape)
dis0 = DenseLayer(Input, nd, W=Normal(0.02), nonlinearity=relu)
print ("Dis fc0:", dis0.output_shape)
if GP_norm is True:
dis1 = DenseLayer(dis0, nd, W=Normal(0.02), nonlinearity=relu)
else:
dis1 = batch_norm(DenseLayer(dis0, nd, W=Normal(0.02), nonlinearity=relu))
print ("Dis fc1:", dis1.output_shape)
if GP_norm is True:
dis2 = batch_norm(DenseLayer(dis1, nd, W=Normal(0.02), nonlinearity=relu))
else:
dis2 = DenseLayer(dis1, nd, W=Normal(0.02), nonlinearity=relu)
print ("Dis fc2:", dis2.output_shape)
disout = DenseLayer(dis2, 1, W=Normal(0.02), nonlinearity=sigmoid)
print ("Dis output:", disout.output_shape)
return disout
示例2: build_generator_32
# 需要导入模块: from lasagne import init [as 别名]
# 或者: from lasagne.init import Normal [as 别名]
def build_generator_32(noise=None, ngf=128):
# noise input
InputNoise = InputLayer(shape=(None, 100), input_var=noise)
#FC Layer
gnet0 = DenseLayer(InputNoise, ngf*4*4*4, W=Normal(0.02), nonlinearity=relu)
print ("Gen fc1:", gnet0.output_shape)
#Reshape Layer
gnet1 = ReshapeLayer(gnet0,([0],ngf*4,4,4))
print ("Gen rs1:", gnet1.output_shape)
# DeConv Layer
gnet2 = Deconv2DLayer(gnet1, ngf*2, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
print ("Gen deconv1:", gnet2.output_shape)
# DeConv Layer
gnet3 = Deconv2DLayer(gnet2, ngf, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
print ("Gen deconv2:", gnet3.output_shape)
# DeConv Layer
gnet4 = Deconv2DLayer(gnet3, 3, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=tanh)
print ("Gen output:", gnet4.output_shape)
return gnet4
示例3: build_discriminator_32
# 需要导入模块: from lasagne import init [as 别名]
# 或者: from lasagne.init import Normal [as 别名]
def build_discriminator_32(image=None,ndf=128):
lrelu = LeakyRectify(0.2)
# input: images
InputImg = InputLayer(shape=(None, 3, 32, 32), input_var=image)
print ("Dis Img_input:", InputImg.output_shape)
# Conv Layer
dis1 = Conv2DLayer(InputImg, ndf, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu)
print ("Dis conv1:", dis1.output_shape)
# Conv Layer
dis2 = batch_norm(Conv2DLayer(dis1, ndf*2, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu))
print ("Dis conv2:", dis2.output_shape)
# Conv Layer
dis3 = batch_norm(Conv2DLayer(dis2, ndf*4, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu))
print ("Dis conv3:", dis3.output_shape)
# Conv Layer
dis4 = DenseLayer(dis3, 1, W=Normal(0.02), nonlinearity=sigmoid)
print ("Dis output:", dis4.output_shape)
return dis4
示例4: build_generator_64
# 需要导入模块: from lasagne import init [as 别名]
# 或者: from lasagne.init import Normal [as 别名]
def build_generator_64(noise=None, ngf=128):
# noise input
InputNoise = InputLayer(shape=(None, 100), input_var=noise)
#FC Layer
gnet0 = DenseLayer(InputNoise, ngf*8*4*4, W=Normal(0.02), nonlinearity=relu)
print ("Gen fc1:", gnet0.output_shape)
#Reshape Layer
gnet1 = ReshapeLayer(gnet0,([0],ngf*8,4,4))
print ("Gen rs1:", gnet1.output_shape)
# DeConv Layer
gnet2 = Deconv2DLayer(gnet1, ngf*8, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
print ("Gen deconv2:", gnet2.output_shape)
# DeConv Layer
gnet3 = Deconv2DLayer(gnet2, ngf*4, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
print ("Gen deconv3:", gnet3.output_shape)
# DeConv Layer
gnet4 = Deconv2DLayer(gnet3, ngf*4, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
print ("Gen deconv4:", gnet4.output_shape)
# DeConv Layer
gnet5 = Deconv2DLayer(gnet4, ngf*2, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=relu)
print ("Gen deconv5:", gnet5.output_shape)
# DeConv Layer
gnet6 = Deconv2DLayer(gnet5, 3, (3,3), (1,1), crop='same', W=Normal(0.02),nonlinearity=tanh)
print ("Gen output:", gnet6.output_shape)
return gnet6
示例5: build_discriminator_128
# 需要导入模块: from lasagne import init [as 别名]
# 或者: from lasagne.init import Normal [as 别名]
def build_discriminator_128(image=None,ndf=128):
lrelu = LeakyRectify(0.2)
# input: images
InputImg = InputLayer(shape=(None, 3, 128, 128), input_var=image)
print ("Dis Img_input:", InputImg.output_shape)
# Conv Layer
dis1 = Conv2DLayer(InputImg, ndf, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu)
print ("Dis conv1:", dis1.output_shape)
# Conv Layer
dis2 = batch_norm(Conv2DLayer(dis1, ndf*2, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu))
print ("Dis conv2:", dis2.output_shape)
# Conv Layer
dis3 = batch_norm(Conv2DLayer(dis2, ndf*4, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu))
print ("Dis conv3:", dis3.output_shape)
# Conv Layer
dis4 = batch_norm(Conv2DLayer(dis3, ndf*8, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu))
print ("Dis conv3:", dis4.output_shape)
# Conv Layer
dis5 = batch_norm(Conv2DLayer(dis4, ndf*16, (4,4), (2,2), pad=1, W=Normal(0.02), nonlinearity=lrelu))
print ("Dis conv4:", dis5.output_shape)
# Conv Layer
dis6 = DenseLayer(dis5, 1, W=Normal(0.02), nonlinearity=sigmoid)
print ("Dis output:", dis6.output_shape)
return dis6
示例6: __init__
# 需要导入模块: from lasagne import init [as 别名]
# 或者: from lasagne.init import Normal [as 别名]
def __init__(self, incomings, axis=1, Q=init.Normal(std=0.001),
R=init.Normal(std=0.001), S=init.Normal(std=0.001),
b=init.Constant(0.), **kwargs):
"""
axis: The first axis of Y to be lumped into a single bilinear model.
The bilinear model are computed independently for each element wrt the preceding axes.
"""
super(BilinearLayer, self).__init__(incomings, **kwargs)
assert axis >= 1
self.axis = axis
self.y_shape, self.u_shape = [input_shape[1:] for input_shape in self.input_shapes]
self.y_dim = int(np.prvod(self.y_shape[self.axis-1:]))
self.u_dim, = self.u_shape
self.Q = self.add_param(Q, (self.y_dim, self.y_dim, self.u_dim), name='Q')
self.R = self.add_param(R, (self.y_dim, self.u_dim), name='R')
self.S = self.add_param(S, (self.y_dim, self.y_dim), name='S')
if b is None:
self.b = None
else:
self.b = self.add_param(b, (self.y_dim,), name='b', regularizable=False)
示例7: __init__
# 需要导入模块: from lasagne import init [as 别名]
# 或者: from lasagne.init import Normal [as 别名]
def __init__(self, incoming, num_centers,
locs=init.Normal(std=1), log_sigma=init.Constant(0.),
**kwargs):
super(RBFLayer, self).__init__(incoming, **kwargs)
self.num_centers = num_centers
assert len(self.input_shape) == 2
in_dim = self.input_shape[1]
self.locs = self.add_param(locs, (num_centers, in_dim), name='locs',
regularizable=False)
self.log_sigma = self.add_param(log_sigma, (), name='log_sigma')
示例8: build_generator_toy
# 需要导入模块: from lasagne import init [as 别名]
# 或者: from lasagne.init import Normal [as 别名]
def build_generator_toy(noise=None, nd=512):
InputNoise = InputLayer(shape=(None, 2), input_var=noise)
print ("Gen input:", InputNoise.output_shape)
gnet0 = DenseLayer(InputNoise, nd, W=Normal(0.02), nonlinearity=relu)
print ("Gen fc0:", gnet0.output_shape)
gnet1 = DenseLayer(gnet0, nd, W=Normal(0.02), nonlinearity=relu)
print ("Gen fc1:", gnet1.output_shape)
gnet2 = DenseLayer(gnet1, nd, W=Normal(0.02), nonlinearity=relu)
print ("Gen fc2:", gnet2.output_shape)
gnetout = DenseLayer(gnet2, 2, W=Normal(0.02), nonlinearity=None)
print ("Gen output:", gnetout.output_shape)
return gnetout
示例9: build_generator_128
# 需要导入模块: from lasagne import init [as 别名]
# 或者: from lasagne.init import Normal [as 别名]
def build_generator_128(noise=None, ngf=128):
lrelu = LeakyRectify(0.2)
# noise input
InputNoise = InputLayer(shape=(None, 100), input_var=noise)
#FC Layer
gnet0 = DenseLayer(InputNoise, ngf*16*4*4, W=Normal(0.02), nonlinearity=lrelu)
print ("Gen fc1:", gnet0.output_shape)
#Reshape Layer
gnet1 = ReshapeLayer(gnet0,([0],ngf*16,4,4))
print ("Gen rs1:", gnet1.output_shape)
# DeConv Layer
gnet2 = Deconv2DLayer(gnet1, ngf*8, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=lrelu)
print ("Gen deconv1:", gnet2.output_shape)
# DeConv Layer
gnet3 = Deconv2DLayer(gnet2, ngf*8, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=lrelu)
print ("Gen deconv2:", gnet3.output_shape)
# DeConv Layer
gnet4 = Deconv2DLayer(gnet3, ngf*4, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=lrelu)
print ("Gen deconv3:", gnet4.output_shape)
# DeConv Layer
gnet5 = Deconv2DLayer(gnet4, ngf*4, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=lrelu)
print ("Gen deconv4:", gnet5.output_shape)
# DeConv Layer
gnet6 = Deconv2DLayer(gnet5, ngf*2, (4,4), (2,2), crop=1, W=Normal(0.02),nonlinearity=lrelu)
print ("Gen deconv5:", gnet6.output_shape)
# DeConv Layer
gnet7 = Deconv2DLayer(gnet6, 3, (3,3), (1,1), crop='same', W=Normal(0.02),nonlinearity=tanh)
print ("Gen output:", gnet7.output_shape)
return gnet7
示例10: style_conv_block
# 需要导入模块: from lasagne import init [as 别名]
# 或者: from lasagne.init import Normal [as 别名]
def style_conv_block(conv_in, num_styles, num_filters, filter_size, stride, nonlinearity=rectify, normalization=instance_norm):
sc_network = ReflectLayer(conv_in, filter_size//2)
sc_network = normalization(ConvLayer(sc_network, num_filters, filter_size, stride, nonlinearity=nonlinearity, W=Normal()), num_styles=num_styles)
return sc_network
示例11: smart_init
# 需要导入模块: from lasagne import init [as 别名]
# 或者: from lasagne.init import Normal [as 别名]
def smart_init(shape):
if len(shape) > 1:
return init.GlorotUniform()(shape)
else:
return init.Normal()(shape)
示例12: __init__
# 需要导入模块: from lasagne import init [as 别名]
# 或者: from lasagne.init import Normal [as 别名]
def __init__(self, incoming, num_filters, filter_size, stride=(1, 1),
crop=0, untie_biases=False,
W=initmethod(), b=lasagne.init.Constant(0.),
nonlinearity=lasagne.nonlinearities.rectify, flip_filters=False,
**kwargs):
super(DeconvLayer, self).__init__(
incoming, num_filters, filter_size, stride, crop, untie_biases,
W, b, nonlinearity, flip_filters, n=2, **kwargs)
# rename self.crop to self.pad
self.crop = self.pad
del self.pad
示例13: InceptionUpscaleLayer
# 需要导入模块: from lasagne import init [as 别名]
# 或者: from lasagne.init import Normal [as 别名]
def InceptionUpscaleLayer(incoming,param_dict,block_name):
branch = [0]*len(param_dict)
# Loop across branches
for i,dict in enumerate(param_dict):
for j,style in enumerate(dict['style']): # Loop up branch
branch[i] = TC2D(
incoming = branch[i] if j else incoming,
num_filters = dict['num_filters'][j],
filter_size = dict['filter_size'][j],
crop = dict['pad'][j] if 'pad' in dict else None,
stride = dict['stride'][j],
W = initmethod('relu'),
nonlinearity = dict['nonlinearity'][j],
name = block_name+'_'+str(i)+'_'+str(j)) if style=='convolutional'\
else NL(
incoming = lasagne.layers.dnn.Pool2DDNNLayer(
incoming = lasagne.layers.Upscale2DLayer(
incoming=incoming if j == 0 else branch[i],
scale_factor = dict['stride'][j]),
pool_size = dict['filter_size'][j],
stride = [1,1],
mode = dict['mode'][j],
pad = dict['pad'][j],
name = block_name+'_'+str(i)+'_'+str(j)),
nonlinearity = dict['nonlinearity'][j])
# Apply Batchnorm
branch[i] = BN(branch[i],name = block_name+'_bnorm_'+str(i)+'_'+str(j)) if dict['bnorm'][j] else branch[i]
# Concatenate Sublayers
return CL(incomings=branch,name=block_name)
# Convenience function to efficiently generate param dictionaries for use with InceptioNlayer
示例14: pd
# 需要导入模块: from lasagne import init [as 别名]
# 或者: from lasagne.init import Normal [as 别名]
def pd(num_layers=2,num_filters=32,filter_size=(3,3),pad=1,stride = (1,1),nonlinearity=elu,style='convolutional',bnorm=1,**kwargs):
input_args = locals()
input_args.pop('num_layers')
return {key:entry if type(entry) is list else [entry]*num_layers for key,entry in input_args.iteritems()}
# Possible Conv2DDNN convenience function. Remember to delete the C2D import at the top if you use this
# def C2D(incoming = None, num_filters = 32, filter_size= [3,3],pad = 'same',stride = [1,1], W = initmethod('relu'),nonlinearity = elu,name = None):
# return lasagne.layers.dnn.Conv2DDNNLayer(incoming,num_filters,filter_size,stride,pad,False,W,None,nonlinearity,False)
# Shape-Preserving Gaussian Sample layer for latent vectors with spatial dimensions.
# This is a holdover from an "old" (i.e. I abandoned it last month) idea.
示例15: _sample_trained_minibatch_gan
# 需要导入模块: from lasagne import init [as 别名]
# 或者: from lasagne.init import Normal [as 别名]
def _sample_trained_minibatch_gan(params_file, n, batch_size, rs):
import lasagne
from lasagne.init import Normal
import lasagne.layers as ll
import theano as th
from theano.sandbox.rng_mrg import MRG_RandomStreams
import theano.tensor as T
import nn
theano_rng = MRG_RandomStreams(rs.randint(2 ** 15))
lasagne.random.set_rng(np.random.RandomState(rs.randint(2 ** 15)))
noise_dim = (batch_size, 100)
noise = theano_rng.uniform(size=noise_dim)
ls = [ll.InputLayer(shape=noise_dim, input_var=noise)]
ls.append(nn.batch_norm(
ll.DenseLayer(ls[-1], num_units=4*4*512, W=Normal(0.05),
nonlinearity=nn.relu),
g=None))
ls.append(ll.ReshapeLayer(ls[-1], (batch_size,512,4,4)))
ls.append(nn.batch_norm(
nn.Deconv2DLayer(ls[-1], (batch_size,256,8,8), (5,5), W=Normal(0.05),
nonlinearity=nn.relu),
g=None)) # 4 -> 8
ls.append(nn.batch_norm(
nn.Deconv2DLayer(ls[-1], (batch_size,128,16,16), (5,5), W=Normal(0.05),
nonlinearity=nn.relu),
g=None)) # 8 -> 16
ls.append(nn.weight_norm(
nn.Deconv2DLayer(ls[-1], (batch_size,3,32,32), (5,5), W=Normal(0.05),
nonlinearity=T.tanh),
train_g=True, init_stdv=0.1)) # 16 -> 32
gen_dat = ll.get_output(ls[-1])
with np.load(params_file) as d:
params = [d['arr_{}'.format(i)] for i in range(9)]
ll.set_all_param_values(ls[-1], params, trainable=True)
sample_batch = th.function(inputs=[], outputs=gen_dat)
samps = []
while len(samps) < n:
samps.extend(sample_batch())
samps = np.array(samps[:n])
return samps