本文整理汇总了Python中keras_preprocessing.image.load_img方法的典型用法代码示例。如果您正苦于以下问题:Python image.load_img方法的具体用法?Python image.load_img怎么用?Python image.load_img使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras_preprocessing.image
的用法示例。
在下文中一共展示了image.load_img方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _compute_stats
# 需要导入模块: from keras_preprocessing import image [as 别名]
# 或者: from keras_preprocessing.image import load_img [as 别名]
def _compute_stats(self, mean = None, std = None):
""" Computes channel-wise mean and standard deviation of all images in the dataset.
If `mean` and `std` arguments are given, they will just be stored instead of being re-computed.
The channel order of both is always "RGB", independent of `color_mode`.
"""
if mean is None:
mean = 0
for fn in tqdm(self.train_img_files, desc = 'Computing channel mean'):
mean += np.mean(np.asarray(load_img(fn), dtype=np.float64), axis = (0,1))
mean /= len(self.train_img_files)
print('Channel-wise mean: {}'.format(mean))
self.mean = np.asarray(mean, dtype=np.float32)
if (mean is None) or (std is None):
std = 0
for fn in tqdm(self.train_img_files, desc = 'Computing channel variance'):
std += np.mean((np.asarray(load_img(fn), dtype=np.float64) - self.mean) ** 2, axis = (0,1))
std = np.sqrt(std / (len(self.train_img_files) - 1))
print('Channel-wise standard deviation: {}'.format(std))
self.std = np.asarray(std, dtype=np.float32)
示例2: load_images
# 需要导入模块: from keras_preprocessing import image [as 别名]
# 或者: from keras_preprocessing.image import load_img [as 别名]
def load_images(data_dir, image_paths, image_shape):
images = None
for i, image_path in enumerate(image_paths):
print()
try:
# Load image
loaded_image = image.load_img(os.path.join(data_dir, image_path), target_size=image_shape)
# Convert PIL image to numpy ndarray
loaded_image = image.img_to_array(loaded_image)
# Add another dimension (Add batch dimension)
loaded_image = np.expand_dims(loaded_image, axis=0)
# Concatenate all images into one tensor
if images is None:
images = loaded_image
else:
images = np.concatenate([images, loaded_image], axis=0)
except Exception as e:
print("Error:", i, e)
return images
示例3: get_preds
# 需要导入模块: from keras_preprocessing import image [as 别名]
# 或者: from keras_preprocessing.image import load_img [as 别名]
def get_preds(model):
size = model.input_shape[1]
filename = os.path.join(os.path.dirname(__file__),
'data', '565727409_61693c5e14.jpg')
batch = KE.preprocess_input(img_to_array(load_img(
filename, target_size=(size, size))))
batch = np.expand_dims(batch, 0)
pred = decode_predictions(model.predict(batch),
backend=K, utils=utils)
return pred
示例4: _load_image
# 需要导入模块: from keras_preprocessing import image [as 别名]
# 或者: from keras_preprocessing.image import load_img [as 别名]
def _load_image(self, filename, target_size = None, randzoom = False):
""" Loads an image file.
# Arguments:
- filename: The path of the image file.
- target_size: Int or tuple of ints. Specifies the target size which the image will be resized to.
If a single int is given, it specifies the size of the smaller side of the image and the aspect ratio will be retained.
If set to -1, the image won't be resized.
If set to None, the default_target_size passed to the constructor will be used.
The actual size may be modified further is `randzoom` is True.
- randzoom: If True and `self.randzoom_range` is not None, random zooming will be applied.
If `self.randzoom_range` is given as floats defining a range relative to the image size,
`target_size` will be used as reference if it is not None, otherwise the original image size.
# Returns:
the image as PIL image.
"""
img = load_img(filename)
if target_size is None:
target_size = self.default_target_size
if (target_size > 0) or (randzoom and (self.randzoom_range is not None)):
if target_size <= 0:
target_size = img.size
if randzoom and (self.randzoom_range is not None):
if isinstance(self.randzoom_range[0], float):
target_size = np.round(np.array(target_size) * np.random.uniform(self.randzoom_range[0], self.randzoom_range[1])).astype(int).tolist()
else:
target_size = np.random.randint(self.randzoom_range[0], self.randzoom_range[1])
if isinstance(target_size, int):
target_size = (target_size, round(img.size[1] * (target_size / img.size[0]))) if img.size[0] < img.size[1] else (round(img.size[0] * (target_size / img.size[1])), target_size)
img = img.resize(target_size, PIL.Image.BILINEAR)
return img
示例5: preprocess_image
# 需要导入模块: from keras_preprocessing import image [as 别名]
# 或者: from keras_preprocessing.image import load_img [as 别名]
def preprocess_image(img_path):
img = image.load_img(img_path, target_size=(224, 224))
input_img_data = image.img_to_array(img)
input_img_data = np.expand_dims(input_img_data, axis=0)
input_img_data = preprocess_input(input_img_data) # final input shape = (1,224,224,3)
return input_img_data