当前位置: 首页>>代码示例>>Python>>正文


Python regularizers.l1_l2方法代码示例

本文整理汇总了Python中keras.regularizers.l1_l2方法的典型用法代码示例。如果您正苦于以下问题:Python regularizers.l1_l2方法的具体用法?Python regularizers.l1_l2怎么用?Python regularizers.l1_l2使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.regularizers的用法示例。


在下文中一共展示了regularizers.l1_l2方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: get_variational_encoder

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import l1_l2 [as 别名]
def get_variational_encoder(node_num, d,
                            n_units, nu1, nu2,
                            activation_fn):
    K = len(n_units) + 1
    # Input
    x = Input(shape=(node_num,))
    # Encoder layers
    y = [None] * (K + 3)
    y[0] = x
    for i in range(K - 1):
        y[i + 1] = Dense(n_units[i], activation=activation_fn,
                         W_regularizer=Reg.l1_l2(l1=nu1, l2=nu2))(y[i])
    y[K] = Dense(d, activation=activation_fn,
                 W_regularizer=Reg.l1_l2(l1=nu1, l2=nu2))(y[K - 1])
    y[K + 1] = Dense(d)(y[K - 1])
    # y[K + 1] = Dense(d, W_regularizer=Reg.l1_l2(l1=nu1, l2=nu2))(y[K - 1])
    y[K + 2] = Lambda(sampling, output_shape=(d,))([y[K], y[K + 1]])
    # Encoder model
    encoder = Model(input=x, outputs=[y[K], y[K + 1], y[K + 2]])
    return encoder 
开发者ID:palash1992,项目名称:GEM-Benchmark,代码行数:22,代码来源:sdne_utils.py

示例2: get_decoder

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import l1_l2 [as 别名]
def get_decoder(node_num, d,
                n_units, nu1, nu2,
                activation_fn):
    K = len(n_units) + 1
    # Input
    y = Input(shape=(d,))
    # Decoder layers
    y_hat = [None] * (K + 1)
    y_hat[K] = y
    for i in range(K - 1, 0, -1):
        y_hat[i] = Dense(n_units[i - 1],
                         activation=activation_fn,
                         W_regularizer=Reg.l1_l2(l1=nu1, l2=nu2))(y_hat[i + 1])
    y_hat[0] = Dense(node_num, activation=activation_fn,
                     W_regularizer=Reg.l1_l2(l1=nu1, l2=nu2))(y_hat[1])
    # Output
    x_hat = y_hat[0]  # decoder's output is also the actual output
    # Decoder Model
    decoder = Model(input=y, output=x_hat)
    return decoder 
开发者ID:palash1992,项目名称:GEM-Benchmark,代码行数:22,代码来源:sdne_utils.py

示例3: regression

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import l1_l2 [as 别名]
def regression(X, Y, epochs, reg_mode):

    x, y = np.array(X),np.array(Y)
    
    model = Sequential()
    
    if reg_mode == 'linear':
        model.add(Dense(1, input_dim=x.shape[1]))
        model.compile(optimizer='rmsprop', metrics=['accuracy'], loss='mse')
    
    elif reg_mode == 'logistic':
        model.add(Dense(1, activation='sigmoid', input_dim=x.shape[1]))
        model.compile(optimizer='rmsprop', metrics=['accuracy'], loss='binary_crossentropy')
    
    elif reg_mode == 'regularized':
        reg = l1_l2(l1=0.01, l2=0.01)
        model.add(Dense(1, activation='sigmoid', W_regularizer=reg, input_dim=x.shape[1]))
        model.compile(optimizer='rmsprop', metrics=['accuracy'], loss='binary_crossentropy')

    out = model.fit(x, y, nb_epoch=epochs, verbose=0, validation_split=.33)
    
    return model, out 
开发者ID:autonomio,项目名称:autonomio,代码行数:24,代码来源:regression.py

示例4: fCreateMNet_Block

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import l1_l2 [as 别名]
def fCreateMNet_Block(input_t, channels, kernel_size=(3, 3), type=1, forwarding=True, l1_reg=0.0, l2_reg=1e-6):
    tower_t = Conv2D(channels,
                     kernel_size=kernel_size,
                     kernel_initializer='he_normal',
                     weights=None,
                     padding='same',
                     strides=(1, 1),
                     kernel_regularizer=l1_l2(l1_reg, l2_reg),
                     )(input_t)
    tower_t = Activation('relu')(tower_t)
    for counter in range(1, type):
        tower_t = Conv2D(channels,
                         kernel_size=kernel_size,
                         kernel_initializer='he_normal',
                         weights=None,
                         padding='same',
                         strides=(1, 1),
                         kernel_regularizer=l1_l2(l1_reg, l2_reg),
                         )(tower_t)
        tower_t = Activation('relu')(tower_t)
    if (forwarding):
        tower_t = concatenate([tower_t, input_t], axis=1)
    return tower_t 
开发者ID:thomaskuestner,项目名称:CNNArt,代码行数:25,代码来源:MNetArt.py

示例5: fCreateVNet_Block

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import l1_l2 [as 别名]
def fCreateVNet_Block(input_t, channels, type=1, kernel_size=(3, 3, 3), l1_reg=0.0, l2_reg=1e-6, iPReLU=0, dr_rate=0):
    tower_t = Dropout(dr_rate)(input_t)
    tower_t = Conv3D(channels,
                     kernel_size=kernel_size,
                     kernel_initializer='he_normal',
                     weights=None,
                     padding='same',
                     strides=(1, 1, 1),
                     kernel_regularizer=l1_l2(l1_reg, l2_reg),
                     )(tower_t)

    tower_t = fGetActivation(tower_t, iPReLU=iPReLU)
    for counter in range(1, type):
        tower_t = Dropout(dr_rate)(tower_t)
        tower_t = Conv3D(channels,
                         kernel_size=kernel_size,
                         kernel_initializer='he_normal',
                         weights=None,
                         padding='same',
                         strides=(1, 1, 1),
                         kernel_regularizer=l1_l2(l1_reg, l2_reg),
                         )(tower_t)
        tower_t = fGetActivation(tower_t, iPReLU=iPReLU)
    tower_t = concatenate([tower_t, input_t], axis=1)
    return tower_t 
开发者ID:thomaskuestner,项目名称:CNNArt,代码行数:27,代码来源:VNetArt.py

示例6: fCreateMNet_Block

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import l1_l2 [as 别名]
def fCreateMNet_Block(input_t, channels, kernel_size=(3,3), type=1, forwarding=True,l1_reg=0.0, l2_reg=1e-6 ):
    tower_t = Conv2D(channels,
                     kernel_size=kernel_size,
                     kernel_initializer='he_normal',
                     weights=None,
                     padding='same',
                     strides=(1, 1),
                     kernel_regularizer=l1_l2(l1_reg, l2_reg),
                     )(input_t)
    tower_t = Activation('relu')(tower_t)
    for counter in range(1, type):
        tower_t = Conv2D(channels,
                         kernel_size=kernel_size,
                         kernel_initializer='he_normal',
                         weights=None,
                         padding='same',
                         strides=(1, 1),
                         kernel_regularizer=l1_l2(l1_reg, l2_reg),
                         )(tower_t)
        tower_t = Activation('relu')(tower_t)
    if (forwarding):
        tower_t = concatenate([tower_t, input_t], axis=1)
    return tower_t 
开发者ID:thomaskuestner,项目名称:CNNArt,代码行数:25,代码来源:motion_MNetArt.py

示例7: fConvIncep

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import l1_l2 [as 别名]
def fConvIncep(input_t, KB=64, layernum=2, l1_reg=0.0, l2_reg=1e-6, iPReLU=0):
    tower_t = Conv3D(filters=KB,
                     kernel_size=[2,2,1],
                     kernel_initializer='he_normal',
                     weights=None,
                     padding='same',
                     strides=(1, 1, 1),
                     kernel_regularizer=l1_l2(l1_reg, l2_reg),
                     )(input_t)
    incep = fGetActivation(tower_t, iPReLU=iPReLU)

    for counter in range(1,layernum):
        incep = InceptionBlock(incep, l1_reg=l1_reg, l2_reg=l2_reg)

    incepblock_out = concatenate([incep, input_t], axis=1)
    return incepblock_out 
开发者ID:thomaskuestner,项目名称:CNNArt,代码行数:18,代码来源:MSnetworks.py

示例8: InceptionBlock

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import l1_l2 [as 别名]
def InceptionBlock(inp, l1_reg=0.0, l2_reg=1e-6):
    KN = fgetKernelNumber()
    branch1 = Conv3D(filters=KN[0], kernel_size=(1,1,1), kernel_initializer='he_normal', weights=None,padding='same',
                     strides=(1,1,1),kernel_regularizer=l1_l2(l1_reg, l2_reg),activation='relu')(inp)

    branch3 = Conv3D(filters=KN[0], kernel_size=(1, 1, 1), kernel_initializer='he_normal', weights=None, padding='same',
                     strides=(1, 1, 1), kernel_regularizer=l1_l2(l1_reg, l2_reg), activation='relu')(inp)
    branch3 = Conv3D(filters=KN[2], kernel_size=(3, 3, 3), kernel_initializer='he_normal', weights=None, padding='same',
                     strides=(1, 1, 1), kernel_regularizer=l1_l2(l1_reg, l2_reg), activation='relu')(branch3)

    branch5 = Conv3D(filters=KN[0], kernel_size=(1, 1, 1), kernel_initializer='he_normal', weights=None, padding='same',
                     strides=(1, 1, 1), kernel_regularizer=l1_l2(l1_reg, l2_reg), activation='relu')(inp)
    branch5 = Conv3D(filters=KN[1], kernel_size=(5, 5, 5), kernel_initializer='he_normal', weights=None, padding='same',
                     strides=(1, 1, 1), kernel_regularizer=l1_l2(l1_reg, l2_reg), activation='relu')(branch5)

    branchpool = MaxPooling3D(pool_size=(3,3,3),strides=(1,1,1),padding='same',data_format='channels_first')(inp)
    branchpool = Conv3D(filters=KN[0], kernel_size=(1, 1, 1), kernel_initializer='he_normal', weights=None, padding='same',
                     strides=(1, 1, 1), kernel_regularizer=l1_l2(l1_reg, l2_reg), activation='relu')(branchpool)
    out = concatenate([branch1, branch3, branch5, branchpool], axis=1)
    return out 
开发者ID:thomaskuestner,项目名称:CNNArt,代码行数:22,代码来源:MSnetworks.py

示例9: _build_model

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import l1_l2 [as 别名]
def _build_model(self, input_shape, **kwargs):
        K.clear_session()
        model = Sequential()
        for layer in range(self.model_params['layers']):
            config = {key: val[layer] for key, val in self.model_params.items() if key != 'layers'}
            if layer == 0:
                model.add(Dense(config['neurons'],
                                kernel_regularizer=l1_l2(l1=config['l1'], l2=config['l2']),
                                input_shape=input_shape))
            else:
                model.add(Dense(config['neurons'],
                                kernel_regularizer=l1_l2(l1=config['l1'], l2=config['l2'])))
            if config['batch_norm']:
                model.add(BatchNormalization())
            model.add(Activation(config['activation']))
            model.add(Dropout(config['dropout']))

        return model 
开发者ID:minerva-ml,项目名称:open-solution-home-credit,代码行数:20,代码来源:models.py

示例10: __init__

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import l1_l2 [as 别名]
def __init__(self,
                 units: int,
                 num_filters: int,
                 ngram_filter_sizes: Tuple[int]=(2, 3, 4, 5),
                 conv_layer_activation: str='relu',
                 l1_regularization: float=None,
                 l2_regularization: float=None,
                 **kwargs):
        self.num_filters = num_filters
        self.ngram_filter_sizes = ngram_filter_sizes
        self.output_dim = units
        self.conv_layer_activation = conv_layer_activation
        self.l1_regularization = l1_regularization
        self.l2_regularization = l2_regularization
        self.regularizer = lambda: l1_l2(l1=self.l1_regularization, l2=self.l2_regularization)

        # These are member variables that will be defined during self.build().
        self.convolution_layers = None
        self.max_pooling_layers = None
        self.projection_layer = None

        self.input_spec = [InputSpec(ndim=3)]
        super(CNNEncoder, self).__init__(**kwargs) 
开发者ID:allenai,项目名称:deep_qa,代码行数:25,代码来源:convolutional_encoder.py

示例11: get_decoder

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import l1_l2 [as 别名]
def get_decoder(node_num, d, K,
                n_units, nu1, nu2,
                activation_fn):
    # Input
    y = Input(shape=(d,))
    # Decoder layers
    y_hat = [None] * (K + 1)
    y_hat[K] = y
    for i in range(K - 1, 0, -1):
        y_hat[i] = Dense(n_units[i - 1],
                         activation=activation_fn,
                         W_regularizer=Reg.l1_l2(l1=nu1, l2=nu2))(y_hat[i + 1])
    y_hat[0] = Dense(node_num, activation=activation_fn,
                     W_regularizer=Reg.l1_l2(l1=nu1, l2=nu2))(y_hat[1])
    # Output
    x_hat = y_hat[0]  # decoder's output is also the actual output
    # Decoder Model
    decoder = Model(input=y, output=x_hat)
    return decoder 
开发者ID:palash1992,项目名称:GEM,代码行数:21,代码来源:sdne_utils.py

示例12: build_output

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import l1_l2 [as 别名]
def build_output(self):
        mean = Dense(self.output_size, activation=MeanAct, kernel_initializer=self.init,
                     kernel_regularizer=l1_l2(self.l1_coef, self.l2_coef),
                     name='mean')(self.decoder_output)

        # Plug in dispersion parameters via fake dispersion layer
        disp = ConstantDispersionLayer(name='dispersion')
        mean = disp(mean)

        output = ColwiseMultLayer([mean, self.sf_layer])

        nb = NB(disp.theta_exp)
        self.loss = nb.loss
        self.extra_models['dispersion'] = lambda :K.function([], [nb.theta])([])[0].squeeze()
        self.extra_models['mean_norm'] = Model(inputs=self.input_layer, outputs=mean)
        self.extra_models['decoded'] = Model(inputs=self.input_layer, outputs=self.decoder_output)
        self.model = Model(inputs=[self.input_layer, self.sf_layer], outputs=output)

        self.encoder = self.get_encoder() 
开发者ID:theislab,项目名称:dca,代码行数:21,代码来源:network.py

示例13: get_encoder

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import l1_l2 [as 别名]
def get_encoder(node_num, d, n_units, nu1, nu2, activation_fn):
    K = len(n_units) + 1
    # Input
    x = Input(shape=(node_num,))
    # Encoder layers
    y = [None] * (K + 1)
    y[0] = x  # y[0] is assigned the input
    for i in range(K - 1):
        y[i + 1] = Dense(n_units[i], activation=activation_fn,
                         W_regularizer=Reg.l1_l2(l1=nu1, l2=nu2))(y[i])
    y[K] = Dense(d, activation=activation_fn,
                 W_regularizer=Reg.l1_l2(l1=nu1, l2=nu2))(y[K - 1])
    # Encoder model
    encoder = Model(input=x, output=y[K])
    return encoder 
开发者ID:palash1992,项目名称:GEM-Benchmark,代码行数:17,代码来源:sdne_utils.py

示例14: __generate_regulariser

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import l1_l2 [as 别名]
def __generate_regulariser(self, l1_value, l2_value):
		""" Returns keras l1/l2 regulariser"""
		if l1_value and l2_value:
			return l1_l2(l1=l1_value, l2=l2_value)
		elif l1_value and not l2_value:
			return l1(l1_value)
		elif l2_value:
			return l2(l2_value)
		else:
			return None 
开发者ID:mprhode,项目名称:malware-prediction-rnn,代码行数:12,代码来源:RNN.py

示例15: test_arg_l1_reg_and_l2_reg

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import l1_l2 [as 别名]
def test_arg_l1_reg_and_l2_reg(self, model):
        model._regularizer = l1_l2(0.01, 0.01)
        self._build_and_assert(model) 
开发者ID:danieljl,项目名称:keras-image-captioning,代码行数:5,代码来源:models_test.py


注:本文中的keras.regularizers.l1_l2方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。