本文整理汇总了Python中keras.regularizers方法的典型用法代码示例。如果您正苦于以下问题:Python keras.regularizers方法的具体用法?Python keras.regularizers怎么用?Python keras.regularizers使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras
的用法示例。
在下文中一共展示了keras.regularizers方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build
# 需要导入模块: import keras [as 别名]
# 或者: from keras import regularizers [as 别名]
def build(self):
try:
self.input_ndim = len(self.previous.input_shape)
except AttributeError:
self.input_ndim = len(self.input_shape)
self.layer.set_input_shape((None, ) + self.input_shape[2:])
if hasattr(self.layer, 'regularizers'):
self.regularizers = self.layer.regularizers
if hasattr(self.layer, 'constraints'):
self.constraints = self.layer.constraints
if hasattr(self.layer, 'trainable_weights'):
self.trainable_weights = self.layer.trainable_weights
if self.initial_weights is not None:
self.layer.set_weights(self.initial_weights)
del self.initial_weights
示例2: __init__
# 需要导入模块: import keras [as 别名]
# 或者: from keras import regularizers [as 别名]
def __init__(self, h, output_dim,
init='glorot_uniform', **kwargs):
self.init = initializations.get(init)
self.h = h
self.output_dim = output_dim
#removing the regularizers and the dropout
super(AttenLayer, self).__init__(**kwargs)
# this seems necessary in order to accept 3 input dimensions
# (samples, timesteps, features)
self.input_spec=[InputSpec(ndim=3)]
示例3: feed_forward_net
# 需要导入模块: import keras [as 别名]
# 或者: from keras import regularizers [as 别名]
def feed_forward_net(input, output, hidden_layers=[64, 64], activations='relu',
dropout_rate=0., l2=0., constrain_norm=False):
'''
Helper function for building a Keras feed forward network.
input: Keras Input object appropriate for the data. e.g. input=Input(shape=(20,))
output: Function representing final layer for the network that maps from the last
hidden layer to output.
e.g. if output = Dense(10, activation='softmax') if we're doing 10 class
classification or output = Dense(1, activation='linear') if we're doing
regression.
'''
state = input
if isinstance(activations, str):
activations = [activations] * len(hidden_layers)
for h, a in zip(hidden_layers, activations):
if l2 > 0.:
w_reg = keras.regularizers.l2(l2)
else:
w_reg = None
const = maxnorm(2) if constrain_norm else None
state = Dense(h, activation=a, kernel_regularizer=w_reg, kernel_constraint=const)(state)
if dropout_rate > 0.:
state = Dropout(dropout_rate)(state)
return output(state)