当前位置: 首页>>代码示例>>Python>>正文


Python regularizers.get方法代码示例

本文整理汇总了Python中keras.regularizers.get方法的典型用法代码示例。如果您正苦于以下问题:Python regularizers.get方法的具体用法?Python regularizers.get怎么用?Python regularizers.get使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在keras.regularizers的用法示例。


在下文中一共展示了regularizers.get方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import get [as 别名]
def __init__(self, output_dim, L,
             init='glorot_uniform', inner_init='orthogonal',
             activation='tanh', inner_activation='hard_sigmoid',
             W_regularizer=None, U_regularizer=None, b_regularizer=None,
             dropout_W=0., dropout_U=0., **kwargs):
    self.output_dim = output_dim
    self.init = initializations.get(init)
    self.inner_init = initializations.get(inner_init)
    self.activation = activations.get(activation)
    self.inner_activation = activations.get(inner_activation)
    self.W_regularizer = regularizers.get(W_regularizer)
    self.U_regularizer = regularizers.get(U_regularizer)
    self.b_regularizer = regularizers.get(b_regularizer)
    self.dropout_W, self.dropout_U = dropout_W, dropout_U
    self.L = L

    if self.dropout_W or self.dropout_U:
        self.uses_learning_phase = True
    super(RHN, self).__init__(**kwargs) 
开发者ID:LaurentMazare,项目名称:deep-models,代码行数:21,代码来源:rhn.py

示例2: __init__

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import get [as 别名]
def __init__(self,
                 filters,
                 pooling='sum',
                 kernel_initializer='glorot_uniform',
                 kernel_regularizer=None,
                 bias_initializer='zeros',
                 activation=None,
                 **kwargs):
        self.activation = activations.get(activation)
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.bias_initializer = initializers.get(bias_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.filters = filters
        self.pooling = pooling

        super(GraphConvS, self).__init__(**kwargs) 
开发者ID:blackmints,项目名称:3DGCN,代码行数:18,代码来源:layer.py

示例3: __init__

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import get [as 别名]
def __init__(self,
                 W_regularizer=None, u_regularizer=None, b_regularizer=None,
                 W_constraint=None, u_constraint=None, b_constraint=None,
                 bias=True, **kwargs):


        self.init = initializers.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.u_regularizer = regularizers.get(u_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.u_constraint = constraints.get(u_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        super(AttentionWithContext, self).__init__(**kwargs) 
开发者ID:AlexGidiotis,项目名称:Document-Classifier-LSTM,代码行数:20,代码来源:attention.py

示例4: __init__

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import get [as 别名]
def __init__(self,
                 W_regularizer=None, u_regularizer=None, b_regularizer=None,
                 W_constraint=None, u_constraint=None, b_constraint=None,
                 bias=True, **kwargs):

        self.supports_masking = True
        self.init = initializers.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.u_regularizer = regularizers.get(u_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.u_constraint = constraints.get(u_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        super(AttentionWithContext, self).__init__(**kwargs) 
开发者ID:Hsankesara,项目名称:DeepResearch,代码行数:20,代码来源:attention_with_context.py

示例5: __init__

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import get [as 别名]
def __init__(self, output_dim,
                 init='glorot_uniform', inner_init='orthogonal',
                 forget_bias_init='one', activation='tanh',
                 inner_activation='hard_sigmoid',
                 W_regularizer=None, U_regularizer=None, b_regularizer=None,
                 dropout_W=0., dropout_U=0., **kwargs):

		self.output_dim = output_dim
		self.init = initializations.get(init)
		self.inner_init = initializations.get(inner_init)
		self.forget_bias_init = initializations.get(forget_bias_init)
		self.activation = activations.get(activation)
		self.inner_activation = activations.get(inner_activation)
		self.W_regularizer = regularizers.get(W_regularizer)
		self.U_regularizer = regularizers.get(U_regularizer)
		self.b_regularizer = regularizers.get(b_regularizer)
		self.dropout_W, self.dropout_U = dropout_W, dropout_U

		if self.dropout_W or self.dropout_U:
			self.uses_learning_phase = True
		super(DecoderVaeLSTM, self).__init__(**kwargs) 
开发者ID:bnsnapper,项目名称:keras_bn_library,代码行数:23,代码来源:recurrent.py

示例6: __init__

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import get [as 别名]
def __init__(self, init='glorot_uniform',
                 U_regularizer=None,
                 b_start_regularizer=None,
                 b_end_regularizer=None,
                 U_constraint=None,
                 b_start_constraint=None,
                 b_end_constraint=None,
                 weights=None,
                 **kwargs):
        super(ChainCRF, self).__init__(**kwargs)
        self.init = initializers.get(init)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_start_regularizer = regularizers.get(b_start_regularizer)
        self.b_end_regularizer = regularizers.get(b_end_regularizer)
        self.U_constraint = constraints.get(U_constraint)
        self.b_start_constraint = constraints.get(b_start_constraint)
        self.b_end_constraint = constraints.get(b_end_constraint)

        self.initial_weights = weights

        self.supports_masking = True
        self.uses_learning_phase = True
        self.input_spec = [InputSpec(ndim=3)] 
开发者ID:UKPLab,项目名称:elmo-bilstm-cnn-crf,代码行数:25,代码来源:ChainCRF.py

示例7: __init__

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import get [as 别名]
def __init__(self,
                 epsilon=1e-4,
                 axis=-1,
                 beta_init='zeros',
                 gamma_init='ones',
                 gamma_regularizer=None,
                 beta_regularizer=None,
                 **kwargs):

        self.supports_masking = True
        self.beta_init = initializers.get(beta_init)
        self.gamma_init = initializers.get(gamma_init)
        self.epsilon = epsilon
        self.axis = axis
        self.gamma_regularizer = regularizers.get(gamma_regularizer)
        self.beta_regularizer = regularizers.get(beta_regularizer)

        super(LayerNormalization, self).__init__(**kwargs) 
开发者ID:ChihebTrabelsi,项目名称:deep_complex_networks,代码行数:20,代码来源:norm.py

示例8: __init__

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import get [as 别名]
def __init__(self,
                 axis=None,
                 epsilon=1e-3,
                 center=True,
                 scale=True,
                 beta_initializer='zeros',
                 gamma_initializer='ones',
                 beta_regularizer=None,
                 gamma_regularizer=None,
                 beta_constraint=None,
                 gamma_constraint=None,
                 **kwargs):
        super(InstanceNormalization, self).__init__(**kwargs)
        self.supports_masking = True
        self.axis = axis
        self.epsilon = epsilon
        self.center = center
        self.scale = scale
        self.beta_initializer = initializers.get(beta_initializer)
        self.gamma_initializer = initializers.get(gamma_initializer)
        self.beta_regularizer = regularizers.get(beta_regularizer)
        self.gamma_regularizer = regularizers.get(gamma_regularizer)
        self.beta_constraint = constraints.get(beta_constraint)
        self.gamma_constraint = constraints.get(gamma_constraint) 
开发者ID:emilwallner,项目名称:Coloring-greyscale-images,代码行数:26,代码来源:instance_normalization.py

示例9: __init__

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import get [as 别名]
def __init__(self,
                 W_regularizer=None, b_regularizer=None,
                 W_constraint=None, b_constraint=None,
                 bias=True,
                 return_attention=False,
                 **kwargs):

        self.supports_masking = True
        self.return_attention = return_attention
        self.init = initializers.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        super(Attention, self).__init__(**kwargs) 
开发者ID:jiujiezz,项目名称:deephlapan,代码行数:21,代码来源:attention.py

示例10: __init__

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import get [as 别名]
def __init__(self, output_dim, memory_dim=128, memory_size=20,
                 controller_output_dim=100, location_shift_range=1,
                 num_read_head=1, num_write_head=1,
                 init='glorot_uniform', inner_init='orthogonal',
                 forget_bias_init='one', activation='tanh',
                 inner_activation='hard_sigmoid',
                 W_regularizer=None, U_regularizer=None, R_regularizer=None,
                 b_regularizer=None, W_y_regularizer=None,
                 W_xi_regularizer=None, W_r_regularizer=None,
                 dropout_W=0., dropout_U=0., **kwargs):
        self.output_dim = output_dim
        self.init = initializations.get(init)
        self.inner_init = initializations.get(inner_init)
        self.forget_bias_init = initializations.get(forget_bias_init)
        self.activation = activations.get(activation)
        self.inner_activation = activations.get(inner_activation)
        self.W_regularizer = regularizers.get(W_regularizer)
        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.dropout_W, self.dropout_U = dropout_W, dropout_U

        if self.dropout_W or self.dropout_U:
            self.uses_learning_phase = True
        super(NTM, self).__init__(**kwargs) 
开发者ID:SigmaQuan,项目名称:NTM-Keras,代码行数:26,代码来源:lstm2ntm.py

示例11: __init__

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import get [as 别名]
def __init__(self,
                 W_regularizer=None, u_regularizer=None, b_regularizer=None,
                 W_constraint=None, u_constraint=None, b_constraint=None,
                 bias=True,
                 return_attention=False, **kwargs):

        self.supports_masking = True
        self.return_attention = return_attention
        self.init = initializers.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.u_regularizer = regularizers.get(u_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)

        self.W_constraint = constraints.get(W_constraint)
        self.u_constraint = constraints.get(u_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        super(AttentionWithContext, self).__init__(**kwargs) 
开发者ID:cbaziotis,项目名称:keras-utilities,代码行数:22,代码来源:layers.py

示例12: on_epoch_end

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import get [as 别名]
def on_epoch_end(self, epoch, logs=None):
        logs = logs or {}
        self.epochs_since_last_save += 1
        if self.epochs_since_last_save >= self.period:
            self.epochs_since_last_save = 0
            #filepath = self.filepath.format(epoch=epoch + 1, **logs)
            current = logs.get(self.monitor)
            if current is None:
                warnings.warn('Can pick best model only with %s available, '
                              'skipping.' % (self.monitor), RuntimeWarning)
            else:
                if self.monitor_op(current, self.best):
                    if self.verbose > 0:
                        print('\nEpoch %05d: %s improved from %0.5f to %0.5f,'
                              ' storing weights.'
                              % (epoch + 1, self.monitor, self.best,
                                 current))
                    self.best = current
                    self.best_epochs = epoch + 1
                    self.best_weights = self.model.get_weights()
                else:
                    if self.verbose > 0:
                        print('\nEpoch %05d: %s did not improve' %
                              (epoch + 1, self.monitor)) 
开发者ID:WeavingWong,项目名称:DigiX_HuaWei_Population_Age_Attribution_Predict,代码行数:26,代码来源:models.py

示例13: evaluate

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import get [as 别名]
def evaluate(self, inputs, fn_inverse=None, fn_plot=None):
        try:
            X, y = inputs
            inputs = X
        except:
            X, conditions, y = inputs
            inputs = [X, conditions]

        y_hat = self.predict(inputs)

        if fn_inverse is not None:
            y_hat = fn_inverse(y_hat)
            y = fn_inverse(y)

        if fn_plot is not None:
            fn_plot([y, y_hat])

        results = []
        for m in self.model.metrics:
            if isinstance(m, str):
                results.append(K.eval(K.mean(get(m)(y, y_hat))))
            else:
                results.append(K.eval(K.mean(m(y, y_hat))))
        return results 
开发者ID:albertogaspar,项目名称:dts,代码行数:26,代码来源:FFNN.py

示例14: __init__

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import get [as 别名]
def __init__(self, init='glorot_uniform',
                 U_regularizer=None, b_start_regularizer=None, b_end_regularizer=None,
                 U_constraint=None, b_start_constraint=None, b_end_constraint=None,
                 weights=None,
                 **kwargs):
        self.supports_masking = True
        self.uses_learning_phase = True
        self.input_spec = [InputSpec(ndim=3)]
        self.init = initializations.get(init)

        self.U_regularizer = regularizers.get(U_regularizer)
        self.b_start_regularizer = regularizers.get(b_start_regularizer)
        self.b_end_regularizer = regularizers.get(b_end_regularizer)
        self.U_constraint = constraints.get(U_constraint)
        self.b_start_constraint = constraints.get(b_start_constraint)
        self.b_end_constraint = constraints.get(b_end_constraint)

        self.initial_weights = weights

        super(ChainCRF, self).__init__(**kwargs) 
开发者ID:UKPLab,项目名称:naacl18-multitask_argument_mining,代码行数:22,代码来源:ChainCRF.py

示例15: __init__

# 需要导入模块: from keras import regularizers [as 别名]
# 或者: from keras.regularizers import get [as 别名]
def __init__(self,
                 W_regularizer=None,
                 b_regularizer=None,
                 W_constraint=None,
                 b_constraint=None,
                 bias=True, **kwargs):
        """
            Keras Layer that implements an Content Attention mechanism.
            Supports Masking.
        """
        self.supports_masking = True
        self.init = initializers.get('glorot_uniform')

        self.W_regularizer = regularizers.get(W_regularizer)
        self.b_regularizer = regularizers.get(b_regularizer)
        self.W_constraint = constraints.get(W_constraint)
        self.b_constraint = constraints.get(b_constraint)

        self.bias = bias
        super(Attention, self).__init__(**kwargs) 
开发者ID:madrugado,项目名称:Attention-Based-Aspect-Extraction,代码行数:22,代码来源:my_layers.py


注:本文中的keras.regularizers.get方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。