本文整理汇总了Python中keras.preprocessing.image.array_to_img方法的典型用法代码示例。如果您正苦于以下问题:Python image.array_to_img方法的具体用法?Python image.array_to_img怎么用?Python image.array_to_img使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.preprocessing.image
的用法示例。
在下文中一共展示了image.array_to_img方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: next
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import array_to_img [as 别名]
def next(self):
# Keeps under lock only the mechanism which advances
# the indexing of each batch.
with self.lock:
index_array, current_index, current_batch_size = next(self.index_generator)
# The transformation of images is not under thread lock
# so it can be done in parallel
batch_x = np.zeros(tuple([current_batch_size] + list(self.image_size)), dtype=K.floatx())
for i, j in enumerate(index_array):
x = scipy.misc.imread(self.x[j])
x = scipy.misc.imresize(x, self.image_size)
x = self.image_data_generator.random_transform(x.astype(K.floatx()))
x = self.image_data_generator.standardize(x)
batch_x[i] = x
if self.save_to_dir:
for i in range(current_batch_size):
img = image.array_to_img(batch_x[i], self.data_format, scale=True)
fname = '{prefix}_{index}_{hash}.{format}'.format(prefix=self.save_prefix,
index=current_index + i,
hash=np.random.randint(1e4),
format=self.save_format)
img.save(os.path.join(self.save_to_dir, fname))
batch_y = self.y[index_array]
return batch_x, batch_y
示例2: extract_vgg16_features
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import array_to_img [as 别名]
def extract_vgg16_features(x):
from keras.preprocessing.image import img_to_array, array_to_img
from keras.applications.vgg16 import preprocess_input, VGG16
from keras.models import Model
# im_h = x.shape[1]
im_h = 224
model = VGG16(include_top=True, weights='imagenet', input_shape=(im_h, im_h, 3))
# if flatten:
# add_layer = Flatten()
# else:
# add_layer = GlobalMaxPool2D()
# feature_model = Model(model.input, add_layer(model.output))
feature_model = Model(model.input, model.get_layer('fc1').output)
print('extracting features...')
x = np.asarray([img_to_array(array_to_img(im, scale=False).resize((im_h,im_h))) for im in x])
x = preprocess_input(x) # data - 127. #data/255.#
features = feature_model.predict(x)
print('Features shape = ', features.shape)
return features
示例3: resize
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import array_to_img [as 别名]
def resize(item, target_h, target_w, keep_aspect_ratio=False):
"""
Resizes an image to match target dimensions
:type item: np.ndarray
:type target_h: int
:type target_w: int
:param item: 3d numpy array or PIL.Image
:param target_h: height in pixels
:param target_w: width in pixels
:param keep_aspect_ratio: If False then image is rescaled to smallest dimension and then cropped
:return: 3d numpy array
"""
img = array_to_img(item, scale=False)
if keep_aspect_ratio:
img.thumbnail((target_w, target_w), PILImage.ANTIALIAS)
img_resized = img
else:
img_resized = img.resize((target_w, target_h), resample=PILImage.NEAREST)
# convert output
img_resized = img_to_array(img_resized)
img_resized = img_resized.astype(dtype=np.uint8)
return img_resized
示例4: test_pair_crop
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import array_to_img [as 别名]
def test_pair_crop(crop_function):
arr1 = np.random.random(500, 800)
arr2 = np.random.random(500, 800)
img1 = PILImage.fromarray(arr1)
img2 = PILImage.fromarray(arr2)
crop_width = img1.width / 5
crop_height = img1.height / 5
result1, result2 = crop_function(img_to_array(img1),
img_to_array(img2),
(crop_height, crop_width),
'channels_last')
result1 = array_to_img(result1)
result2 = array_to_img(result2)
assert result1.width == crop_width == result2.width
assert result2.height == crop_height == result2.height
示例5: make_image
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import array_to_img [as 别名]
def make_image(self, data):
from keras.preprocessing.image import array_to_img
try:
if len(data.shape) == 2:
# grayscale image, just add once channel
data = data.reshape((data.shape[0], data.shape[1], 1))
image = array_to_img(data)
except Exception:
return None
# image = image.resize((128, 128))
return image
示例6: make_image_from_dense_softmax
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import array_to_img [as 别名]
def make_image_from_dense_softmax(self, neurons):
from aetros.utils import array_to_img
img = array_to_img(neurons.reshape((1, len(neurons), 1)))
img = img.resize((9, len(neurons) * 8))
return img
示例7: make_image_from_dense
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import array_to_img [as 别名]
def make_image_from_dense(self, neurons):
from aetros.utils import array_to_img
cols = int(math.ceil(math.sqrt(len(neurons))))
even_length = cols * cols
diff = even_length - len(neurons)
if diff > 0:
neurons = np.append(neurons, np.zeros(diff, dtype=neurons.dtype))
img = array_to_img(neurons.reshape((1, cols, cols)))
img = img.resize((cols * 8, cols * 8))
return img
示例8: dump_image
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import array_to_img [as 别名]
def dump_image(x, filename, format):
img = image.array_to_img(x, scale=False)
img.save(filename, format)
return
示例9: augmentation
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import array_to_img [as 别名]
def augmentation(self):
# 读入3通道的train和label, 分别转换成矩阵, 然后将label的第一个通道放在train的第2个通处, 做数据增强
print("运行 Augmentation")
# Start augmentation.....
trains = self.train_imgs
labels = self.label_imgs
path_train = self.train_path
path_label = self.label_path
path_merge = self.merge_path
imgtype = self.img_type
path_aug_merge = self.aug_merge_path
print('%d images \n%d labels' % (len(trains), len(labels)))
if len(trains) != len(labels) or len(trains) == 0 or len(trains) == 0:
print("trains can't match labels")
return 0
if not os.path.lexists(path_merge):
os.mkdir(path_merge)
if not os.path.lexists(path_aug_merge):
os.mkdir(path_aug_merge)
for i in range(len(trains)):
img_t = load_img(path_train + "/" + str(i) + "." + imgtype) # 读入train
img_l = load_img(path_label + "/" + str(i) + "." + imgtype) # 读入label
x_t = img_to_array(img_t) # 转换成矩阵
x_l = img_to_array(img_l)
x_t[:, :, 2] = x_l[:, :, 0] # 把label当做train的第三个通道
img_tmp = array_to_img(x_t)
img_tmp.save(path_merge + "/" + str(i) + "." + imgtype) # 保存合并后的图像
img = x_t
img = img.reshape((1,) + img.shape) # 改变shape(1, 512, 512, 3)
savedir = path_aug_merge + "/" + str(i) # 存储合并增强后的图像
if not os.path.lexists(savedir):
os.mkdir(savedir)
print("running %d doAugmenttaion" % i)
self.do_augmentate(img, savedir, str(i)) # 数据增强
示例10: Augmentation
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import array_to_img [as 别名]
def Augmentation(self):
# 读入3通道的train和label, 分别转换成矩阵, 然后将label的第一个通道放在train的第2个通处, 做数据增强
print("运行 Augmentation")
"""
Start augmentation.....
"""
trains = self.train_imgs
labels = self.label_imgs
path_train = self.train_path
path_label = self.label_path
path_merge = self.merge_path
imgtype = self.img_type
path_aug_merge = self.aug_merge_path
print(len(trains), len(labels))
if len(trains) != len(labels) or len(trains) == 0 or len(trains) == 0:
print("trains can't match labels")
return 0
for i in range(len(trains)):
img_t = load_img(path_train + "/" + str(i) + "." + imgtype) # 读入train
img_l = load_img(path_label + "/" + str(i) + "." + imgtype) # 读入label
x_t = img_to_array(img_t) # 转换成矩阵
x_l = img_to_array(img_l)
x_t[:, :, 2] = x_l[:, :, 0] # 把label当做train的第三个通道
img_tmp = array_to_img(x_t)
img_tmp.save(path_merge + "/" + str(i) + "." + imgtype) # 保存合并后的图像
img = x_t
img = img.reshape((1,) + img.shape) # 改变shape(1, 512, 512, 3)
savedir = path_aug_merge + "/" + str(i) # 存储合并增强后的图像
if not os.path.lexists(savedir):
os.mkdir(savedir)
self.doAugmentate(img, savedir, str(i)) # 数据增强
示例11: cut_text_line
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import array_to_img [as 别名]
def cut_text_line(geo, scale_ratio_w, scale_ratio_h, im_array, img_path, s):
geo /= [scale_ratio_w, scale_ratio_h]
p_min = np.amin(geo, axis=0)
p_max = np.amax(geo, axis=0)
min_xy = p_min.astype(int)
max_xy = p_max.astype(int) + 2
sub_im_arr = im_array[min_xy[1]:max_xy[1], min_xy[0]:max_xy[0], :].copy()
for m in range(min_xy[1], max_xy[1]):
for n in range(min_xy[0], max_xy[0]):
if not point_inside_of_quad(n, m, geo, p_min, p_max):
sub_im_arr[m - min_xy[1], n - min_xy[0], :] = 255
sub_im = image.array_to_img(sub_im_arr, scale=False)
sub_im.save(img_path + '_subim%d.jpg' % s)
示例12: run
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import array_to_img [as 别名]
def run(segmenter, data):
data_gen = data['data_gen']
num_instances = data['num_instances']
out_directory = os.path.realpath(data['dir_target'])
keep_context = data['keep_context']
# dataset = getattr(datasets, data['dataset_name'])(**data)
dataset = getattr(datasets, data['dataset_name'])
for idx, image in enumerate(data_gen):
if idx > 20:
break
print('Processing {} out of {}'.format(idx+1, num_instances), end='\r')
pred_final, scores = predict(segmenter, image, h=dh, w=dw)
# draw prediction as rgb
pred_final = color_output_image(dataset.palette, pred_final[:, :, 0])
pred_final = array_to_img(pred_final)
out_file = os.path.join(
out_directory,
'{}_{}_{}_out.png'.format(
idx,
keep_context,
utils.basename_without_ext(pw)))
sys.stdout.flush()
if os.path.isfile(out_file):
continue
utils.ensure_dir(out_directory)
print('Saving output to {}'.format(out_file))
pilimg = PILImage.fromarray(image.astype(np.uint8), mode='RGB')
pilimg.save(out_file.replace('_out.png', '.png'))
pred_final.save(out_file)
示例13: test_crop
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import array_to_img [as 别名]
def test_crop(crop_function):
arr = np.random.random(500, 800)
img = PILImage.fromarray(arr)
crop_width = img.width / 5
crop_height = img.height / 5
result = crop_function(img_to_array(img), (crop_height, crop_width), 'channels_last')
result = array_to_img(result)
assert result.width == crop_width
assert result.height == crop_height
示例14: eval_model
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import array_to_img [as 别名]
def eval_model():
model = createDenseNet(nb_classes=nb_classes,img_dim=img_dim,depth=densenet_depth,
growth_rate = densenet_growth_rate)
model.load_weights(check_point_file)
optimizer = Adam()
model.compile(loss='categorical_crossentropy',optimizer=optimizer,metrics=['accuracy'])
label_list_path = 'datasets/cifar-10-batches-py/batches.meta'
keras_dir = os.path.expanduser(os.path.join('~', '.keras'))
datadir_base = os.path.expanduser(keras_dir)
if not os.access(datadir_base, os.W_OK):
datadir_base = os.path.join('/tmp', '.keras')
label_list_path = os.path.join(datadir_base, label_list_path)
with open(label_list_path, mode='rb') as f:
labels = pickle.load(f)
(x_train,y_train),(x_test,y_test) = cifar10.load_data()
x_test = x_test.astype('float32')
x_test /= 255
y_test= keras.utils.to_categorical(y_test, nb_classes)
test_datagen = getDataGenerator(train_phase=False)
test_datagen = test_datagen.flow(x_test,y_test,batch_size = batch_size,shuffle=False)
# Evaluate model with test data set and share sample prediction results
evaluation = model.evaluate_generator(test_datagen,
steps=x_test.shape[0] // batch_size,
workers=4)
print('Model Accuracy = %.2f' % (evaluation[1]))
counter = 0
figure = plt.figure()
plt.subplots_adjust(left=0.1,bottom=0.1, right=0.9, top=0.9,hspace=0.5, wspace=0.3)
for x_batch,y_batch in test_datagen:
predict_res = model.predict_on_batch(x_batch)
for i in range(batch_size):
actual_label = labels['label_names'][np.argmax(y_batch[i])]
predicted_label = labels['label_names'][np.argmax(predict_res[i])]
if actual_label != predicted_label:
counter += 1
pics_raw = x_batch[i]
pics_raw *= 255
pics = array_to_img(pics_raw)
ax = plt.subplot(25//5, 5, counter)
ax.axis('off')
ax.set_title(predicted_label)
plt.imshow(pics)
if counter >= 25:
plt.savefig("./wrong_predicted.jpg")
break
if counter >= 25:
break
print("Everything seems OK...")
示例15: testDataGenerator
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import array_to_img [as 别名]
def testDataGenerator(pics_num):
"""visualize the pics after data augmentation
Args:
pics_num:
the number of pics you want to observe
return:
None
"""
print("Now, we are testing data generator......")
(x_train,y_train),(x_test,y_test) = cifar10.load_data()
x_train = x_train.astype('float32')
y_train = keras.utils.to_categorical(y_train, 10)
# Load label names to use in prediction results
label_list_path = 'datasets/cifar-10-batches-py/batches.meta'
keras_dir = os.path.expanduser(os.path.join('~', '.keras'))
datadir_base = os.path.expanduser(keras_dir)
if not os.access(datadir_base, os.W_OK):
datadir_base = os.path.join('/tmp', '.keras')
label_list_path = os.path.join(datadir_base, label_list_path)
with open(label_list_path, mode='rb') as f:
labels = pickle.load(f)
datagen = getDataGenerator(train_phase=True)
"""
x_batch is a [-1,row,col,channel] np array
y_batch is a [-1,labels] np array
"""
figure = plt.figure()
plt.subplots_adjust(left=0.1,bottom=0.1, right=0.9, top=0.9,hspace=0.5, wspace=0.3)
for x_batch,y_batch in datagen.flow(x_train,y_train,batch_size = pics_num):
for i in range(pics_num):
pics_raw = x_batch[i]
pics = array_to_img(pics_raw)
ax = plt.subplot(pics_num//5, 5, i+1)
ax.axis('off')
ax.set_title(labels['label_names'][np.argmax(y_batch[i])])
plt.imshow(pics)
plt.savefig("./processed_data.jpg")
break
print("Everything seems OK...")