本文整理汇总了Python中keras.preprocessing.image.ImageDataGenerator方法的典型用法代码示例。如果您正苦于以下问题:Python image.ImageDataGenerator方法的具体用法?Python image.ImageDataGenerator怎么用?Python image.ImageDataGenerator使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类keras.preprocessing.image
的用法示例。
在下文中一共展示了image.ImageDataGenerator方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: get_image_data_augmentor_from_dataset
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import ImageDataGenerator [as 别名]
def get_image_data_augmentor_from_dataset(dataset):
from keras.preprocessing.image import ImageDataGenerator
dataset_config = dataset['config']
augShearRange = float(get_option(dataset_config, 'augShearRange', 0.1))
augZoomRange = float(get_option(dataset_config, 'augZoomRange', 0.1))
augHorizontalFlip = bool(get_option(dataset_config, 'augHorizontalFlip', False))
augVerticalFlip = bool(get_option(dataset_config, 'augVerticalFlip', False))
augRotationRange = float(get_option(dataset_config, 'augRotationRange', 0.2))
return ImageDataGenerator(
rotation_range=augRotationRange,
shear_range=augShearRange,
zoom_range=augZoomRange,
horizontal_flip=augHorizontalFlip,
vertical_flip=augVerticalFlip
)
示例2: evaluate_test_dataset
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import ImageDataGenerator [as 别名]
def evaluate_test_dataset():
## Test
test_datagen = ImageDataGenerator(rescale=1. / 255)
test_generator = test_datagen.flow_from_directory(
dataset_test_path,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='sparse', # Binary to Multi classification changes
save_to_dir=None,
shuffle=False)
scores = model.evaluate_generator(test_generator, nb_test_samples // batch_size)
logging.debug('model.metrics_names {}'.format(model.metrics_names))
logging.debug('scores {}'.format(scores))
示例3: pre_processing
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import ImageDataGenerator [as 别名]
def pre_processing(img):
# Random exposure and saturation (0.9 ~ 1.1 scale)
rand_s = random.uniform(0.9, 1.1)
rand_v = random.uniform(0.9, 1.1)
img = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
tmp = np.ones_like(img[:, :, 1]) * 255
img[:, :, 1] = np.where(img[:, :, 1] * rand_s > 255, tmp, img[:, :, 1] * rand_s)
img[:, :, 2] = np.where(img[:, :, 2] * rand_v > 255, tmp, img[:, :, 2] * rand_v)
img = cv2.cvtColor(img, cv2.COLOR_HSV2RGB)
# Centering helps normalization image (-1 ~ 1 value)
return img / 127.5 - 1
# Get ImageDataGenerator arguments(options) depends on mode - (train, val, test)
示例4: __init__
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import ImageDataGenerator [as 别名]
def __init__(
self, train_path="../data_set/train", label_path="../data_set/label", merge_path="../data_set/merge",
aug_merge_path="../data_set/aug_merge", aug_train_path="../data_set/aug_train",
aug_label_path="../data_set/aug_label", img_type="tif"
):
# Using glob to get all .img_type form path
self.train_imgs = glob.glob(train_path + "/*." + img_type) # 训练集
self.label_imgs = glob.glob(label_path + "/*." + img_type) # label
self.train_path = train_path
self.label_path = label_path
self.merge_path = merge_path
self.img_type = img_type
self.aug_merge_path = aug_merge_path
self.aug_train_path = aug_train_path
self.aug_label_path = aug_label_path
self.slices = len(self.train_imgs)
self.datagen = ImageDataGenerator(
rotation_range=0.2,
width_shift_range=0.05,
height_shift_range=0.05,
shear_range=0.05,
zoom_range=0.05,
horizontal_flip=True,
fill_mode='nearest')
示例5: train_model
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import ImageDataGenerator [as 别名]
def train_model(model, X, X_test, Y, Y_test):
checkpoints = []
if not os.path.exists('Data/Checkpoints/'):
os.makedirs('Data/Checkpoints/')
checkpoints.append(ModelCheckpoint('Data/Checkpoints/best_weights.h5', monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=True, mode='auto', period=1))
checkpoints.append(TensorBoard(log_dir='Data/Checkpoints/./logs', histogram_freq=0, write_graph=True, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None))
# Creates live data:
# For better yield. The duration of the training is extended.
# If you don't want, use this:
# model.fit(X, Y, batch_size=10, epochs=25, validation_data=(X_test, Y_test), shuffle=True, callbacks=checkpoints)
from keras.preprocessing.image import ImageDataGenerator
generated_data = ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=0, width_shift_range=0.1, height_shift_range=0.1, horizontal_flip = True, vertical_flip = False)
generated_data.fit(X)
import numpy
model.fit_generator(generated_data.flow(X, Y, batch_size=8), steps_per_epoch=X.shape[0]//8, epochs=25, validation_data=(X_test, Y_test), callbacks=checkpoints)
return model
示例6: test_image_data_generator_with_validation_split
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import ImageDataGenerator [as 别名]
def test_image_data_generator_with_validation_split(self):
for test_images in self.all_test_images:
img_list = []
for im in test_images:
img_list.append(image.img_to_array(im)[None, ...])
images = np.vstack(img_list)
generator = image.ImageDataGenerator(validation_split=0.5)
seq = generator.flow(images, np.arange(images.shape[0]),
shuffle=False, batch_size=3,
subset='validation')
x, y = seq[0]
assert list(y) == [0, 1, 2]
seq = generator.flow(images, np.arange(images.shape[0]),
shuffle=False, batch_size=3,
subset='training')
x2, y2 = seq[0]
assert list(y2) == [4, 5, 6]
with pytest.raises(ValueError):
generator.flow(images, np.arange(images.shape[0]),
shuffle=False, batch_size=3,
subset='foo')
示例7: test_image_data_generator_invalid_data
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import ImageDataGenerator [as 别名]
def test_image_data_generator_invalid_data(self):
generator = image.ImageDataGenerator(
featurewise_center=True,
samplewise_center=True,
featurewise_std_normalization=True,
samplewise_std_normalization=True,
zca_whitening=True,
data_format='channels_last')
# Test fit with invalid data
with pytest.raises(ValueError):
x = np.random.random((3, 10, 10))
generator.fit(x)
# Test flow with invalid data
with pytest.raises(ValueError):
x = np.random.random((32, 10, 10))
generator.flow(np.arange(x.shape[0]))
示例8: test_directory_iterator_class_mode_input
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import ImageDataGenerator [as 别名]
def test_directory_iterator_class_mode_input(self, tmpdir):
tmpdir.join('class-1').mkdir()
# save the images in the paths
count = 0
for test_images in self.all_test_images:
for im in test_images:
filename = str(tmpdir / 'class-1' / 'image-{}.jpg'.format(count))
im.save(filename)
count += 1
# create iterator
generator = image.ImageDataGenerator()
dir_iterator = generator.flow_from_directory(str(tmpdir), class_mode='input')
batch = next(dir_iterator)
# check if input and output have the same shape
assert(batch[0].shape == batch[1].shape)
# check if the input and output images are not the same numpy array
input_img = batch[0][0]
output_img = batch[1][0]
output_img[0][0][0] += 1
assert(input_img[0][0][0] != output_img[0][0][0])
示例9: data_gen_mnist
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import ImageDataGenerator [as 别名]
def data_gen_mnist(X_train):
datagen = ImageDataGenerator()
datagen.fit(X_train)
return datagen
示例10: learn
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import ImageDataGenerator [as 别名]
def learn():
(train_x, train_y, sample_weight), (test_x, test_y) = load_data()
datagen = ImageDataGenerator(horizontal_flip=True,
vertical_flip=True)
train_generator = datagen.flow(train_x, train_y, sample_weight=sample_weight)
base = VGG16(weights='imagenet', include_top=False, input_shape=(None, None, 3))
for layer in base.layers[:-4]:
layer.trainable = False
model = models.Sequential([
base,
layers.BatchNormalization(),
layers.Conv2D(64, (3, 3), activation='relu', padding='same'),
layers.GlobalAveragePooling2D(),
layers.BatchNormalization(),
layers.Dense(64, activation='relu'),
layers.BatchNormalization(),
layers.Dropout(0.20),
layers.Dense(80, activation='softmax')
])
model.compile(optimizer=optimizers.RMSprop(lr=1e-5),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.summary()
reduce_lr = ReduceLROnPlateau(verbose=1)
model.fit_generator(train_generator, epochs=400,
steps_per_epoch=100,
validation_data=(test_x[:800], test_y[:800]),
callbacks=[reduce_lr])
result = model.evaluate(test_x, test_y)
print(result)
model.save('12306.image.model.h5', include_optimizer=False)
示例11: predict_image_dir
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import ImageDataGenerator [as 别名]
def predict_image_dir():
# Predict
# TODO: Hardcoding
# Put all images in sample_images/test folder
dataset_predict_path='sample_images'
#dataset_predict_path='temp'
logging.debug('dataset_predict_path {}'.format(dataset_predict_path))
predict_datagen = ImageDataGenerator(rescale=1. / 255)
predict_generator = predict_datagen.flow_from_directory(
dataset_predict_path,
target_size=(img_height, img_width),
batch_size=batch_size,
class_mode='sparse', # Binary to Multi classification changes
save_to_dir=None,
shuffle=False)
nb_predict_samples = get_images_count_recursive(dataset_predict_path)
logging.debug('nb_predict_samples {}'.format(nb_predict_samples))
prediction = model.predict_generator(predict_generator, nb_predict_samples // batch_size, verbose=1)
logging.debug('\n\nprediction \n{}'.format(prediction))
# Display predictions
matches=[]
for root, dirnames, filenames in os.walk(os.path.join(dataset_predict_path,'test')):
for filename in fnmatch.filter(filenames, '*.jpg'):
matches.append(os.path.join(root, filename))
for index,preds in enumerate(prediction):
logging.debug('\n{}'.format((matches[index])))
for index2, pred in enumerate(preds):
logging.debug('class_names {}'.format(class_names[index2]))
logging.debug('pred {0:6f}'.format(float(pred)))
示例12: save_bottlebeck_features_btl
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import ImageDataGenerator [as 别名]
def save_bottlebeck_features_btl():
dataset_btl_path = 'dataset_btl/train'
batch_size = 1
datagen = ImageDataGenerator(rescale=1. / 255)
# build the VGG16 network
model = applications.VGG16(include_top=False, weights='imagenet') # exclude 3 FC layers on top of network
score_iou_btl_g, nb_btl_samples = get_images_count_recursive(dataset_btl_path)
logging.debug('score_iou_btl_g {}'.format(score_iou_btl_g))
logging.debug('nb_btl_samples {}'.format(nb_btl_samples))
## Train
generator = datagen.flow_from_directory(
dataset_btl_path,
target_size=(img_width, img_height),
batch_size=batch_size,
classes=None, # the order of the classes, which will map to the label indices, will be alphanumeric
class_mode=None, # "categorical": 2D one-hot encoded labels; "None": yield batches of data, no labels; "sparse" will be 1D integer labels.
save_to_dir='temp',
shuffle=False) # Don't shuffle else [class index = alphabetical folder order] logic used below might become wrong; first 1000 images will be cats, then 1000 dogs
logging.info('generator.class_indices {}'.format(generator.class_indices))
# classes: If not given, the order of the classes, which will map to the label indices, will be alphanumeric
bottleneck_features_btl = model.predict_generator(
generator, nb_btl_samples // batch_size)
logging.debug('bottleneck_features_btl {}'.format(bottleneck_features_btl.shape)) # bottleneck_features_train (10534, 4, 4, 512) where train images i.e Blazer+Jeans=5408+5126=10532 images;
# save the output as a Numpy array
logging.debug('Saving bottleneck_features_btl...')
np.save(open('output/bottleneck_features_btl.npy', 'w'),
bottleneck_features_btl)
示例13: load_and_preprocess_data_generator
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import ImageDataGenerator [as 别名]
def load_and_preprocess_data_generator():
# TBD
train_data_dir = "dataset2/train"
validation_data_dir = "dataset2/validation"
# Initiate the train and test generators with data Augumentation
train_datagen = ImageDataGenerator(rescale = 1./255, shear_range=0.2, horizontal_flip = True, fill_mode = "nearest",
zoom_range = 0.3, width_shift_range = 0.3, height_shift_range=0.3,
rotation_range=30)
test_datagen = ImageDataGenerator(rescale = 1./255, shear_range=0.2, horizontal_flip = True, fill_mode = "nearest",
zoom_range = 0.3, width_shift_range = 0.3, height_shift_range=0.3,
rotation_range=30)
train_generator = train_datagen.flow_from_directory(train_data_dir, target_size = (img_height, img_width),
batch_size = batch_size, class_mode = "categorical")
validation_generator = test_datagen.flow_from_directory(validation_data_dir, target_size = (img_height, img_width),
class_mode = "categorical")
# HARDCODING
input_shape = (img_width, img_height, img_channels)
logging.debug('input_shape {}'.format(input_shape))
return train_generator, validation_generator, input_shape
示例14: get_batch_predictions
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import ImageDataGenerator [as 别名]
def get_batch_predictions(path, batch_size=32):
"""
Path: path to the image directory
batch_size: default batch size is 32
Return: batches and vector representation of each images
"""
model = VGGFace(include_top=False, input_shape=(3, 224, 224), pooling='max')
gen = image.ImageDataGenerator(rescale=1./255)
_batches = gen.flow_from_directory(path, target_size=(224, 224), batch_size=batch_size, shuffle=False)
_predictions = model.predict_generator(_batches, val_samples=_batches.n)
return _batches, _predictions
示例15: build_data_loader
# 需要导入模块: from keras.preprocessing import image [as 别名]
# 或者: from keras.preprocessing.image import ImageDataGenerator [as 别名]
def build_data_loader(X, Y):
datagen = ImageDataGenerator()
generator = datagen.flow(
X, Y, batch_size=BATCH_SIZE)
return generator